MHB About the “Axiom of Dependent Choice”

  • Thread starter Thread starter steenis
  • Start date Start date
  • Tags Tags
    Choice
steenis
Messages
312
Reaction score
18
I learned something new today: the “Axiom of Dependent Choice”:

The axiom can be stated as follows: For every nonempty set $X$ and every entire binary relation $R$ on $X$, there exists a sequence $(x_n)_{ n \in \mathbb{N} }$ in $X$ such that $x_nRx_{n+1}$ for all $n \in \mathbb{N}$. (Here, an entire binary relation on $X$ is one where for every $a \in X$, there exists a $b \in X$ such that $aRb$.)

See Wikipedia: https://en.wikipedia.org/wiki/Axiom_of_dependent_choice

I want to ask here: what is your experience with this axiom? Did you ever use the “Axiom of Dependent Choice”, how and why?
 
Physics news on Phys.org
Thank you for this.

I am rarely directly confronted with AC and its weaker siblings such as DC, but reading the link made me realize that, yes, I must have been using DC implicitly, because DC is enough to prove Baire's theorem. (In fact, per this reference in the article, DC and Baire are equivalent.) Now, since the metric space version of Baire is used in three foundational theorems in functional analysis (open mapping, closed graph and Banach-Steinhaus), I have indeed implicitly used DC when I was invoking these theorems.

Surely someone closer to the foundations has a deeper insight to offer.
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top