Abstract Algebra: Groups and Subgroups

Click For Summary
The discussion revolves around proving that the set H, consisting of elements that commute with every element in S, is closed under the binary operation *. To demonstrate this, two arbitrary elements h and h' from H are taken, and it is shown that their product h*h' also belongs to H. The participants clarify that while associativity is not needed to establish closure, it is essential for later proving H is a subgroup of G. A step-by-step approach is provided, emphasizing the use of associativity multiple times to reach the conclusion. Understanding these concepts is crucial for exam preparation in abstract algebra.
taylor81792
Messages
16
Reaction score
0
The problem says: Suppose that * is an associative binary operation on a set S.
Let H= {a ε S l a * x = x * a for all x ε s}. Show that H is closed under *. ( We think of H as consisting of all elements of S that commute with every element in S)

My teacher is horrible so I am pretty lost in the class. I am aware of what the associative property is, but I'm not sure how to go about solving this question when it comes to the binary operation. This is going to be on my exam so I need to know how to solve it.
 
Physics news on Phys.org
A binary operation is nothing but a two-variable function. It takes two elements of the set G and gives a new element. In other words, a binary operation is a function *: G\timesG → G and G is a set. Since * is a function on two-variables and its domain is a cartesian product of two sets, the elements in * are ordered pairs like (x,y), we define (x,y) := x*y. If x*y is in G, we say G is closed under the operation *.

Are those definitions clear? Now, your problem asks us to show that H is closed under *. To do that you should take two arbitrary elements of H, like h and h' and show that h*h' is also in H. You don't need to use associativity to solve this problem, the associativity is later needed when you want to show that H is a subgroup of G.
 
That helps a lot! Thank you!
 
AdrianZ said:
A binary operation is nothing but a two-variable function. It takes two elements of the set G and gives a new element. In other words, a binary operation is a function *: G\timesG → G and G is a set. Since * is a function on two-variables and its domain is a cartesian product of two sets, the elements in * are ordered pairs like (x,y), we define (x,y) := x*y. If x*y is in G, we say G is closed under the operation *.

Are those definitions clear? Now, your problem asks us to show that H is closed under *. To do that you should take two arbitrary elements of H, like h and h' and show that h*h' is also in H. You don't need to use associativity to solve this problem, the associativity is later needed when you want to show that H is a subgroup of G.

(emphasis mine)

yes, you DO. suppose we want to show that h*h' is in H whenever h,h' are. by definition, this means we want to show that:

(h*h')*x = x*(h*h'), for all x in S.

to actually DO this, we might proceed like this:

(h*h')*x = h*(h'*x) <---this is where we need associativity

= h*(x*h') (by definition of H, since h' is in H)

= (h*x)*h' <---associativity used AGAIN

= (x*h)*h' (since h is in H)

= x*(h*h') <---associativity used for a THIRD time.
 
Deveno said:
(emphasis mine)

yes, you DO. suppose we want to show that h*h' is in H whenever h,h' are. by definition, this means we want to show that:

(h*h')*x = x*(h*h'), for all x in S.

to actually DO this, we might proceed like this:

(h*h')*x = h*(h'*x) <---this is where we need associativity

= h*(x*h') (by definition of H, since h' is in H)

= (h*x)*h' <---associativity used AGAIN

= (x*h)*h' (since h is in H)

= x*(h*h') <---associativity used for a THIRD time.

indeed. you're right, I didn't do all the steps because the problem looked so straight and simple but you're right.
 
Thank you so much
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
489
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 26 ·
Replies
26
Views
813
  • · Replies 3 ·
Replies
3
Views
838
  • · Replies 5 ·
Replies
5
Views
908
  • · Replies 3 ·
Replies
3
Views
993
  • · Replies 17 ·
Replies
17
Views
9K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K