AC power loss in lossy dielectric (capacitor) with DC-bias field

AI Thread Summary
In a lossy dielectric capacitor with a constant permittivity and loss tangent, the energy loss during charging is influenced by both the dielectric properties and the equivalent series resistance (ESR) of the conductors. The discussion highlights that while the loss tangent indicates the fraction of energy dissipated, the energy loss during voltage transitions may not scale linearly as expected due to the behavior of ESR. Specifically, the energy loss for charging from 1V to 2V is debated, with some suggesting it should be three times that of charging from 0V to 1V, while others argue that simulations using ESR yield consistent energy loss across transitions. Additionally, the role of DC bias in relation to AC signals is questioned, suggesting that the focus may be misdirected. Overall, the complexities of dielectric loss and conductor resistance are central to understanding energy dissipation in these capacitors.
Ohm113
Messages
1
Reaction score
0
TL;DR Summary
In a lossy dielectric with constant eps and tanD, does the energy loss increase with dc-bias while keeping the ac voltage and frequency constant?
Hi there,

if a dielectric (capacitor) is described with a constant permittivit eps (or C) and loss-tangent DF, how much energy ist lost when charging the capacitor by 1V?

For example: C=1, DF=0.1.
When charging from 0 to 1V, the lost energy (in J) is ...?
When charging from 1V to 2V, the lost energy (in J) is?

Since DF is the fraction of dissipation to stored energy, I would say the lost energy for the 1->2 transition is 3x that of the 0->1 transition. However, if a ESR equivalent resitance is calculated using ESR=DF*omega*C and that is used in a circuit simulator, the energy loss is the same for both transitions. However, the ESR approach might only be possible for pure AC signals without bias and also with a constant sinus shape. Looking forward for your discussions!

Thanks, Ohm
 
Engineering news on Phys.org
Welcome to PF.

Ohm113 said:
Summary:: In a lossy dielectric with constant eps and tanD,

Sorry, what is "eps"?
 
berkeman said:
Welcome to PF.
Sorry, what is "eps"?
I did a google search on "dielectric constant eps" and this is what I found, for what it's worth:

Eps=x Specifies the static (or zero-frequency) dielectric constant of the solvent. EpsInf=x Specifies the dynamic (or optical) dielectric constant of the solvent. For SMD calculations, it should be set to the square of the solvent's refractive index at 293 K.
 
  • Like
Likes berkeman and jim mcnamara
Ohm113 said:
Summary:: In a lossy dielectric with constant eps and tanD, does the energy loss increase with dc-bias while keeping the ac voltage and frequency constant?
It seems to me that this question is over-constrained, by focus on the dielectric.

It is not the dielectric loss that is important in tanD.
It is loss in the ESR of the thin foil conductors.

It is the changing capacitor voltage that generates heat in the ESR.
The DC zero or bias voltage is not important.

How can the DC bias be changed while having a zero AC component?
Surely that must be an AC voltage change.
 
Baluncore said:
It seems to me that this question is over-constrained, by focus on the dielectric.

It is not the dielectric loss that is important in tanD.
It is loss in the ESR of the thin foil conductors.
Figure 4 in this Murata document: https://article.murata.com/en-us/article/impedance-esr-frequency-characteristics-in-capacitors

shows that dielectric loss is responsible for a substantial part of the loss at frequencies below the self resonant frequency:

ESR Chart.png
 
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top