Acute Triangle ABC: Point P and Line Intersections Formula

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on a geometric problem involving an acute triangle ABC and an interior point P. It establishes that if lines BP and CP intersect sides AC and AB at points E and F, respectively, and if D is the intersection of AP with line segment EF, then the foot of the perpendicular from D to BC, denoted as K, bisects the angle EKF. This conclusion is derived through geometric properties and relationships inherent in triangle geometry.

PREREQUISITES
  • Understanding of acute triangles and their properties
  • Familiarity with geometric constructions and intersections
  • Knowledge of angle bisectors and perpendiculars in geometry
  • Basic skills in proof techniques used in Euclidean geometry
NEXT STEPS
  • Study the properties of angle bisectors in triangles
  • Explore geometric constructions involving interior points of triangles
  • Learn about the intersection of lines and segments in triangle geometry
  • Investigate the use of coordinate geometry to prove geometric theorems
USEFUL FOR

This discussion is beneficial for geometry enthusiasts, mathematics educators, and students preparing for mathematical competitions who seek to deepen their understanding of triangle properties and geometric proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Consider an acute triangle $ABC$ and let $P$ be an interior point of $ABC$. Suppose the lines $BP$ and $CP$, when produced, meet $AC$ and $AB$ in $E$ and $F$ respectively. Let $D$ be the point where $AP$ intersects the line segment $EF$ and $K$ be the foot of perpendicular from $D$ on to $BC$. Show that $DK$ bisects $\angle EKF$.

-----

 
Physics news on Phys.org
No one answered last week's POTW. (Sadface) However, you can find the suggested solution below:
[TIKZ]\coordinate[label=left:B] (B) at (0,0);
\coordinate[label=right:C] (C) at (12, 0);
\coordinate[label=above:A] (A) at (4,6);
\coordinate[label=below: Q] (Q) at (9,0);
\coordinate[label=below: M] (M) at (2,0);
\coordinate[label=below: L] (L) at (10,0);
\coordinate[label=below: K] (K) at (7.333333,0);
\coordinate[label=above: F] (F) at (2,3);
\coordinate[label=above: E] (E) at (10,1.5);
\coordinate[label=above: P] (P) at (8,1.2);
\coordinate[label=above: D] (D) at (7.333333,2);
\draw (B) -- (C)-- (A)-- (B);
\draw (B) -- (E);
\draw (A) -- (Q);
\draw (E) -- (F);
\draw (F) -- (C);
\draw (F) -- (M);
\draw (D) -- (K);
\draw (E) -- (L);
\draw [dashed] (F) -- (K);
\draw [dashed] (E) -- (K);
\draw (M) rectangle +(-0.5, 0.5);
\draw (K) rectangle +(-0.5, 0.5);
\draw (L) rectangle +(-0.5, 0.5);
\node (1) at (6.3,0.3) {$\alpha$};
\begin{scope}
\path[clip] (B) -- (K) -- (F) -- cycle;
\draw[thick,blue,double] (K) circle (0.812);
\end{scope}
\node (2) at (8.3,0.3) {$\beta$};
\begin{scope}
\path[clip] (E) -- (K) -- (C) -- cycle;
\draw[thick,blue,double] (K) circle (0.812);
\end{scope}[/TIKZ]Produce $AP$ to meet $BC$ in $Q$. Join $KE$ and $KF$. Draw perpendiculars from $F$ and $E$ to $BC$ to meet it in $M$ and $L$ respectively. Denote $\angle BKF=\alpha$ and $\angle CKE=\beta$. If we can show that $\alpha=\beta$, this implies that $\angle DKF=\angle DKE$.

Since the cevians $AQ,\,BE$ and $CF$ concur, we may write

$\dfrac{BQ}{QC}=\dfrac{z}{y},\,\dfrac{CE}{EA}=\dfrac{x}{z},\,\dfrac{AF}{FB}=\dfrac{y}{x}$

We observe that

$\dfrac{FD}{DE}=\dfrac{[AFD]}{[AED]}=\dfrac{[PFD]}{[PED]}=\dfrac{[AFP]}{[AEP]}$

However, standard computations involving bases give

$[AFP]=\dfrac{y}{y+x}[ABP],\,[AEP]=\dfrac{z}{z+x}[ACP],\,[ABP]=\dfrac{z}{x+y+z}[ABC]$ and $[ACP]=\dfrac{y}{x+y+z}[ABC]$

Thus we obtain $\dfrac{FD}{DE}=\dfrac{x+z}{x+y}$.

On the other hand,

$\tan \alpha=\dfrac{FM}{KM}=\dfrac{FB\sin B}{KM},\,\tan \beta=\dfrac{EL}{KL}=\dfrac{EC\sin C}{KL}$

Using $FB=\left(\dfrac{x}{x+y}\right)AC$ and $AB\sin B=AC\sin C$ we obtain

$\begin{align*}\dfrac{\tan \alpha}{\tan \beta}&=\left(\dfrac{x+z}{x+y}\right)\left(\dfrac{KL}{KM}\right)\\&=\left(\dfrac{x+z}{x+y}\right)\left(\dfrac{DE}{FD}\right)\\&=\left(\dfrac{x+z}{x+y}\right)\left(\dfrac{x+y}{x+z}\right)\\&=1\end{align*}$

$\therefore \alpha=\beta$ and this implies that $\angle DKF=\angle DKE$. In other words, $DK$ bisects $\angle EKF$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K