Well let's work it out. Adding the first two angular momentums you get four states namely:
\left| {1,1} \right\rangle = \left| {{1 \mathord{\left/ {\vphantom {1 {2,1/2}}} \right.<br />
\kern-\nulldelimiterspace} {2,1/2}}} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right. \kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle
\left| {1,0} \right\rangle = \frac{1}{{\sqrt 2 }}\left( {\left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}}\right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2, -{1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.<br />
\kern-\nulldelimiterspace} {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.<br />
\kern-\nulldelimiterspace} 2}}}} \right\rangle + \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.<br />
\kern-\nulldelimiterspace} {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.<br />
\kern-\nulldelimiterspace} 2}}}} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle } \right)
\left| {1, - 1} \right\rangle = \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.<br />
\kern-\nulldelimiterspace} {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.<br />
\kern-\nulldelimiterspace} 2}}}} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2, - {1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle <br />
\left| {0,0} \right\rangle = \frac{1}{{\sqrt 2 }}\left( {\left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2, - {1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle - \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2, - {1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle }\right)
Now we add the last 1/2 angular momentum. I'm not going to write out all of the states because I'm getting bored of this, but I'll show you the two 1/2 ones I think your missing in your count. Consider \left| {{1 \mathord{\left/{\vphantom {1 {2,{1\mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle = \left| {0,0} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.<br />
\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/<br />
{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle = \frac{1}<br />
{{\sqrt 2 }}\left( { \uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow } \right) where I am using up and down arrows to represent spin up and spin down and simplify my notation. You also have \left| {{1 \mathord{\left/{\vphantom {1 {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.<br />
\kern-\nulldelimiterspace} {2, - {1 \mathord{\left/{\vphantom {1 2}} \right.<br />
\kern-\nulldelimiterspace} 2}}}} \right\rangle = \left| {0,0} \right\rangle \otimes \left| {{1 \mathord{\left/{\vphantom {1 {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right.\kern-\nulldelimiterspace} {2,{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}}}} \right\rangle = \frac{1}{{\sqrt 2 }}\left( { \uparrow \downarrow \downarrow - \downarrow \uparrow \downarrow } \right). These are the two 1/2 spins I think you missed in your counting