Adding numbers with exponents (confusion)

Click For Summary
SUMMARY

The discussion clarifies the difference between combining terms with variables and constants in algebra. Specifically, it explains that while 3x² + 4x² simplifies to 7x² using the distributive property, the expression 3² + 4² does not follow the same rule and equals 25. The confusion arises from treating coefficients and bases similarly, which is incorrect. The law of distributivity of multiplication over addition is crucial for understanding this distinction.

PREREQUISITES
  • Understanding of algebraic expressions and variables
  • Familiarity with the distributive property in mathematics
  • Basic knowledge of exponents and their properties
  • Ability to differentiate between coefficients and bases in mathematical expressions
NEXT STEPS
  • Study the distributive property in detail, focusing on its applications in algebra
  • Learn about the properties of exponents and how they differ from coefficients
  • Practice simplifying algebraic expressions with both variables and constants
  • Explore common algebraic mistakes and misconceptions to avoid in future calculations
USEFUL FOR

Students struggling with algebra, educators teaching algebraic concepts, and anyone looking to clarify the differences between operations involving variables and constants.

some one1
Messages
2
Reaction score
0
Alright here's my confusion, if i take say 3x^2 + 4x^2 ill end up with 7x^2 which i accepted was the correct way to think about it, but if i try the same problem without the x variable doing the same method, 3^2 + 4^2 = 7^2 this is obviously not the correct answer. Instead 3^2 = 9 and 4^2 = 16 so together they equal 25 (7^2 = 49 is incorrect!)

Now if your planning on telling me i should just treat 3x^2 differently then 3^2 without explaining why, well that is not going to help my understanding. I need someone to explain it to me using a common sense approach as to why you do this instead of this, just following rules blindly is next to magic when it comes to trying to fully understand what's going on.

I really appreciate the help, math has always been my weak point.
 
Mathematics news on Phys.org
$$3x^2=x^2+x^2+x^2$$

$$4x^2=x^2+x^2+x^2+x^2$$

$$3x^2+4x^2=x^2+x^2+x^2+x^2+x^2+x^2+x^2=7x^2$$
 
In rewriting $3x^2+4x^2$ to $7x^2$ we use the law of distributivity of multiplication over addition. This law says
\[
(a+b)c=ac+bc\qquad(1)
\]
for all numbers $a$, $b$ and $c$. In this case, $a=3$, $b=4$ and $c=x^2$. Substituting these values into (1) gives
\[
(3+4)x^2=3x^2+4x^2
\]
so we can indeed rewrite the right-hand side to the left-hand side and then rewrite it further to $7x^2$ since $3+4=7$.

On the other hand, the expression $3^2+4^2$ simply does not have the shape of either the left- or the right-hand side of (1). You can't match it with (1), i.e., you can't come up with three values such that replacing $a$, $b$ and $c$ in (1) by those values would give $3^2+4^2$. Therefore, (1) can't be used to rewrite $3^2+4^2$.
 
greg1313 said:
$$3x^2=x^2+x^2+x^2$$

$$4x^2=x^2+x^2+x^2+x^2$$

$$3x^2+4x^2=x^2+x^2+x^2+x^2+x^2+x^2+x^2=7x^2$$

Thanks, i think i understand what i was doing wrong with how i was looking at it, for example, 2x^2 + 2x^2 = 4x^2, if x=2 then 4x^2 = 16 which is the same as 2^3+2^3 which equals 16.
looking at how they are the same helps me to see the obvious mistake i was making, i was looking at 2^3 and was confusing the base with how i understood coefficients to work. but by comparing them with equal examples to one another i saw the obvious difference and mistake in my understanding.

Thank you for helping me, it has finally clicked with my common sense.
 
$3x^2+4x^2$ is the same as 3 apples + 4 apples...
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
689
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K