MHB Admiral Ackbar's question at Yahoo Answers (Inverse image of a vector)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Image Vector
AI Thread Summary
The discussion revolves around finding a vector v in ℝ^3 that satisfies the linear transformation T(v) = [4, -2, 9]^T using the given matrix A. The matrix A is determined to be invertible with a determinant of 108. To find the vector v, the equation Av = [4, -2, 9]^T is solved by calculating v as A^{-1}[4, -2, 9]^T. The response provides a link to the original question on Yahoo Answers for further assistance. The focus is on applying linear algebra concepts to solve the problem effectively.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Could someone explain this? I need to know it for a test, so it would be great if anyone could help.

A linear transformation T: ℝ^3 --> ℝ^3 has matrix
A =
[ 1 -3 1 ]
[ 2 -8 8 ]
[-6 3 -15 ]
Find a vector v in ℝ^3 that satisfies T(v) = [4 -2 9]^T .

Here is a link to the question:

Find vector that satisfies the linear transformation, linear algebra question, PLEASE HELP? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Admiral Ackbar,

The determinant of the given matrix $A$ is $\det A=108$, so is invertible. We have $$Av=\begin{bmatrix}{4}\\{-2}\\{9}\end{bmatrix}\Leftrightarrow v=A^{-1}\begin{bmatrix}{4}\\{-2}\\{9}\end{bmatrix}=\begin{bmatrix}{1}&{-3}&{1}\\{2}&{-8}&{8}\\{-6}&{3}&{-15}\end{bmatrix}^{-1}\begin{bmatrix}{4}\\{-2}\\{9}\end{bmatrix}=\ldots$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top