kelly0303
- 573
- 33
Hello! I have some points in the plane, with errors on both x and y coordinates. The goal of the experiment is to check if the points are consistent with a straight line or not i.e. if they can be described by a function of the form ##y = f(x)=a+bx## or if there is some nonlinearity involved (e.g. ##y = f(x)=a+bx+cx^2##). Assume first we have only 3 points measured. In this case, the approach is to calculate the area of the triangle formed and the associated error, so we get something of the form ##A\pm dA##. If ##dA>A##, then we are consistent with non-linearity and we can set a constraint (to some given confidence level) on the magnitude of a possible non-linearity (e.g. ##c<c_0##). If we have 4 points, we can do something similar and we can for example calculate the area of the triangle formed by the first 3 points (in order of the x coordinate), ##A_1\pm dA_1## and the area of the last 3 points ##A_2\pm dA_2## and then sum them add and do error propagation to get ##A\pm dA## then proceed as above (in the case of this experiment we expect to not see a non-linearity so we just aim for upper bounds). My question is, what is the advantage of having more points? Intuitively, I expect that the more points you have, the more information you gain and hence the better you can constrain the non-linearity. But it seems like the error gets bigger and bigger, simply because we have more points and error propagation (you can assume that the errors on x and y are the same, or at least very similar for different measurements). So, assuming the points are actually on the line, for 3 points we get ##0\pm dA_3## and for, say 10 points we get ##0\pm dA_{10}## with ##dA_{10}>dA_3##, so the upper bounds we can set on the non-linearity are better (smaller) in the case of 3 points. But intuitively that doesn't make sense. Can someone help me understand what I am doing wrong. Why is it better to have more points? Thank you!
). The range ##\Delta A^{max}_j## represents the span of their experiment in unexplored parameter space. In other words, adding isotopes increases the scope of the experiment, but doesn't increase its sensitivity. The sensitivity only cares about the precision (in Hz) of the spectroscopic measurements. Does that make sense?
Beyond Standard Model physics is cool and all, but I'll take my weekends to myself thank you.