MHB Aidan's question via email about Fourier Transforms (2)

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Email Fourier
AI Thread Summary
The discussion focuses on finding the Fourier Transform of the function 3H(t - 1)e^(-2t) using the Second Shift Theorem. To apply this theorem, the function is rewritten in terms of v = t - 1, leading to the expression e^(-2(t - 1))e^(-2). The Fourier Transform is computed as 3e^(-2) multiplied by the Fourier Transform of H(t - 1)e^(-2(t - 1)), resulting in 3e^(-2 - iω)(1/(2 + iω)). The Heaviside unit step function H(t) is crucial in this calculation, and the Fourier Transform of H(t)e^(-at) is referenced for clarity. The discussion effectively demonstrates the application of the Second Shift Theorem in Fourier analysis.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Fourier Transform of $\displaystyle 3\,H\left( t - 1 \right) \mathrm{e}^{-2\,t} $.

In order to use the Second Shift Theorem, the function needs to be entirely of the form $\displaystyle f\left( t - 1 \right) $. To do this let $\displaystyle v = t - 1 \implies t = v + 1 $, then

$\displaystyle \begin{align*}
\mathrm{e}^{-2\,t} &= \mathrm{e}^{-2 \, \left( v + 1 \right) } \\
&= \mathrm{e}^{-2\,v - 2 } \\
&= \mathrm{e}^{-2\,\left( t - 1 \right) - 2 } \\
&= \mathrm{e}^{-2\,\left( t - 1 \right) } \,\mathrm{e}^{-2}
\end{align*} $

And so

$\displaystyle \begin{align*} \mathcal{F}\,\left\{ 3\,H\left( t - 1 \right) \mathrm{e}^{-2\,t} \right\} &= 3\,\mathrm{e}^{-2}\,\mathcal{F}\,\left\{ H\left( t - 1 \right) \mathrm{e}^{-2\,\left( t - 1 \right) } \right\} \\
&= 3\,\mathrm{e}^{-2}\,\mathrm{e}^{-\mathrm{i}\,\omega} \,\mathcal{F}\,\left\{ H\left( t \right) \mathrm{e}^{-2\,t} \right\} \\ &= 3\,\mathrm{e}^{-2 - \mathrm{i}\,\omega} \left( \frac{1}{2 + \mathrm{i}\,\omega } \right) \end{align*} $
 
Mathematics news on Phys.org
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top