Albedo equations giving different results

  • Thread starter Thread starter Sabrewolf
  • Start date Start date
  • Tags Tags
    Albedo
Click For Summary
SUMMARY

The forum discussion centers on the discrepancies encountered while calculating the Earth's albedo using two different equations. The first equation, derived from the Stefan-Boltzmann law, yields an albedo of 0.3, which aligns with the provided textbook answer. In contrast, the second equation, which calculates albedo based on the solar constant and absorbed power, results in an incorrect value of 0.82. The user suspects a potential typo in the absorbed power value, suggesting it should be 410 W/m² instead of 240 W/m² to resolve the inconsistency.

PREREQUISITES
  • Understanding of the Stefan-Boltzmann law
  • Familiarity with albedo and its calculation methods
  • Knowledge of solar constants and their significance
  • Basic algebra for manipulating equations
NEXT STEPS
  • Review the derivation of the Stefan-Boltzmann law and its applications
  • Investigate the concept of albedo in different planetary contexts
  • Learn about the solar constant and its role in climate science
  • Examine common errors in albedo calculations and how to avoid them
USEFUL FOR

Climate scientists, environmental researchers, students studying atmospheric physics, and anyone interested in understanding Earth's energy balance and albedo calculations.

Sabrewolf
Messages
7
Reaction score
0
1. This question isn't so much a homework question per se, however I am having difficulty using certain equations to find the albedo of the Earth. In attempting to find the albedo, I am using two equations, shown below, however each equation gives a different answer. I am given the following variables:

- Power absorbed at the surface of the Earth is 240 W/m^2
- Solar Constant(S) is 1.37 kW/m^2
- Earth is assumed to be a perfect blackbody, thus emissivity is 1
- Temperature(T) on the Earth is assumed to be 255 kelvin
σ is Stefan Boltzmann constant, 5.67 x 10^-8
ε is emissivity of the Earth
α is albedo

Homework Equations



T = \sqrt[4]{\frac{S(1-\alpha)}{4\epsilon\sigma}} <-- this is a given equation found by combining the Stefan Boltzmann law with an equation for incoming power.

albedo = total scattered power/total incident power <--this is from a provided data booklet

The Attempt at a Solution



The actual work isn't too hard, when the 1st equation is moved around to find the albedo, it reads:

\alpha = -\frac{T^{4}4\sigma}{S} + 1

This equation, when solved, gives the answer \alpha=0.3, this is the correct response according to the book

When I use the second equation, I take the solar constant S as the total incident power. In order to find the total scattered power, I'm subtracting the amount absorbed (given as 240W/m^{2}) from the solar constant because the difference isn't absorbed by the earth, meaning it is reflected into space or scattered. However I get this:

[\frac{1.37*10^{3} - 240}{1.37*10^{3}} = 0.82

This value is incorrect and I'm not sure why, given a presumed correct equation, I'm getting a wrong answer. Am I misusing the equation somehow?
 
Physics news on Phys.org
The given data are inconsistent. To match the rest of the data, the power absorbed should be 410W/m2. Maybe the 240 is a typo for 420.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
967
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K