Alexander's question via email about Laplace Transforms

Click For Summary
SUMMARY

The evaluation of the Laplace Transform for the function $\mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6 \left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\}$ reveals that the Heaviside function introduces a second shift. By substituting $u = t - 4$, the expression simplifies to $\mathrm{e}^{20 - 4\,s} \left[ \frac{6}{\left( s - 5 \right) ^2 + 36} \right]$. This transformation utilizes both the second and first shift theorems effectively, confirming the correctness of the evaluation.

PREREQUISITES
  • Understanding of Laplace Transforms
  • Familiarity with the Heaviside step function
  • Knowledge of shift theorems in Laplace Transforms
  • Basic calculus involving exponential and trigonometric functions
NEXT STEPS
  • Study the properties of the Heaviside function in Laplace Transforms
  • Learn about the first and second shift theorems in detail
  • Explore applications of Laplace Transforms in differential equations
  • Practice evaluating more complex Laplace Transforms with multiple shifts
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with Laplace Transforms, particularly those focusing on signal processing and control systems.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6 \left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} $

The Heaviside function suggests a second shift, but to do that, the entire function needs to be a function of $\displaystyle t - 4$.

Let $\displaystyle u = t - 4 \implies t = u + 4$, then

$\displaystyle \begin{align*} \mathrm{e}^{5\,t} &= \mathrm{e}^{5\left( u + 4 \right) } \\ &= \mathrm{e}^{5\,u + 20} \\
&= \mathrm{e}^{5\left( t - 4 \right) + 20} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{5\left( t - 4 \right) } \end{align*}$

So

$\displaystyle \begin{align*} \mathcal{L}\left\{ H \left( t - 4 \right) \sin{\left[ 6\left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} &= \mathrm{e}^{20}\,\mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6\left( t - 4 \right) \right] }\, \mathrm{e}^{5\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{-4\,s} \,\mathcal{L} \left\{ \sin{ \left( 6\,t \right) }\, \mathrm{e}^{5\,t} \right\} \textrm{ by the second shift theorem} \\ &= \mathrm{e}^{20 - 4\,s } \left[ \frac{6}{s^2 + 6^2} \right] _{s \to s - 5} \textrm{ by the first shift theorem} \\ &= \mathrm{e}^{20 - 4\,s} \left[ \frac{6}{\left( s - 5 \right) ^2 + 36} \right] \end{align*}$
 
  • Like
Likes   Reactions: benorin
Physics news on Phys.org

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K