MHB Alexander's question via email about Laplace Transforms

Click For Summary
The evaluation of the Laplace Transform involves the Heaviside function, indicating a shift in the function. By substituting \( u = t - 4 \), the expression simplifies to \( e^{20} e^{5(t - 4)} \). Applying the second shift theorem leads to \( e^{20 - 4s} \) multiplied by the Laplace Transform of \( \sin(6t) e^{5t} \). The final result incorporates the first shift theorem, yielding \( e^{20 - 4s} \left[ \frac{6}{(s - 5)^2 + 36} \right] \). The calculations confirm the correctness of the evaluation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6 \left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} $

The Heaviside function suggests a second shift, but to do that, the entire function needs to be a function of $\displaystyle t - 4$.

Let $\displaystyle u = t - 4 \implies t = u + 4$, then

$\displaystyle \begin{align*} \mathrm{e}^{5\,t} &= \mathrm{e}^{5\left( u + 4 \right) } \\ &= \mathrm{e}^{5\,u + 20} \\
&= \mathrm{e}^{5\left( t - 4 \right) + 20} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{5\left( t - 4 \right) } \end{align*}$

So

$\displaystyle \begin{align*} \mathcal{L}\left\{ H \left( t - 4 \right) \sin{\left[ 6\left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} &= \mathrm{e}^{20}\,\mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6\left( t - 4 \right) \right] }\, \mathrm{e}^{5\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{-4\,s} \,\mathcal{L} \left\{ \sin{ \left( 6\,t \right) }\, \mathrm{e}^{5\,t} \right\} \textrm{ by the second shift theorem} \\ &= \mathrm{e}^{20 - 4\,s } \left[ \frac{6}{s^2 + 6^2} \right] _{s \to s - 5} \textrm{ by the first shift theorem} \\ &= \mathrm{e}^{20 - 4\,s} \left[ \frac{6}{\left( s - 5 \right) ^2 + 36} \right] \end{align*}$
 
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K