MHB Alexander's question via email about Laplace Transforms

Click For Summary
The evaluation of the Laplace Transform involves the Heaviside function, indicating a shift in the function. By substituting \( u = t - 4 \), the expression simplifies to \( e^{20} e^{5(t - 4)} \). Applying the second shift theorem leads to \( e^{20 - 4s} \) multiplied by the Laplace Transform of \( \sin(6t) e^{5t} \). The final result incorporates the first shift theorem, yielding \( e^{20 - 4s} \left[ \frac{6}{(s - 5)^2 + 36} \right] \). The calculations confirm the correctness of the evaluation.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate $\displaystyle \mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6 \left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} $

The Heaviside function suggests a second shift, but to do that, the entire function needs to be a function of $\displaystyle t - 4$.

Let $\displaystyle u = t - 4 \implies t = u + 4$, then

$\displaystyle \begin{align*} \mathrm{e}^{5\,t} &= \mathrm{e}^{5\left( u + 4 \right) } \\ &= \mathrm{e}^{5\,u + 20} \\
&= \mathrm{e}^{5\left( t - 4 \right) + 20} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{5\left( t - 4 \right) } \end{align*}$

So

$\displaystyle \begin{align*} \mathcal{L}\left\{ H \left( t - 4 \right) \sin{\left[ 6\left( t - 4 \right) \right] } \,\mathrm{e}^{5\,t} \right\} &= \mathrm{e}^{20}\,\mathcal{L}\left\{ H\left( t - 4 \right) \sin{ \left[ 6\left( t - 4 \right) \right] }\, \mathrm{e}^{5\left( t - 4 \right) } \right\} \\ &= \mathrm{e}^{20}\,\mathrm{e}^{-4\,s} \,\mathcal{L} \left\{ \sin{ \left( 6\,t \right) }\, \mathrm{e}^{5\,t} \right\} \textrm{ by the second shift theorem} \\ &= \mathrm{e}^{20 - 4\,s } \left[ \frac{6}{s^2 + 6^2} \right] _{s \to s - 5} \textrm{ by the first shift theorem} \\ &= \mathrm{e}^{20 - 4\,s} \left[ \frac{6}{\left( s - 5 \right) ^2 + 36} \right] \end{align*}$
 
Mathematics news on Phys.org
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
2
Views
7K