## A Novel Technique of Calculating Unit Hypercube Integrals

Introduction In this insight article, we will build all the machinery necessary to evaluate unit hypercube integrals by a novel technique. We will first state a theorem on Dirichlet integrals, second develop a sequence of nested sets that point-wise converges to a unit hypercube, and thirdly make these two pieces compatible by means of a…

## A Trick to Memorizing Trig Special Angle Values Table

In calculus classes when you are asked to evaluate a trig function at a specific angle, it’s 99.9% of the time at one of the so-called special angles we use in our chart. Since you are likely to have learned degrees first I’ll include degree angles in the first chart, but after that, it’s gonna…

## The Analytic Continuation of the Lerch and the Zeta Functions

Introduction In this brief Insight article the analytic continuations of the Lerch Transcendent and Riemann Zeta Functions are achieved via the Euler’s Series Transformation (zeta) and a generalization thereof, the E-process (Lerch). Dirichlet Series is mentioned as a steppingstone. The continuations are given but not shown to be convergent by any means, though if you…

## A Path to Fractional Integral Representations of Some Special Functions

Introduction This bit is what new thing you can learn reading this:) As for original content, I only have hope that the method of using the sets $$C_N^n: = \left\{ { \vec x \in {\mathbb{R}^n}|{x_i} \ge 0\forall i,\sum\limits_{k = 1}^n {x_k^{2N}} < n – 1 } \right\}$$ and Dirichlet integrals to evaluate certain integrals of…