MHB Algebra help about polynomials

AI Thread Summary
The discussion focuses on finding the general form of a fourth-degree polynomial function, f(x), with specified zeros of plus or minus 2 and plus or minus 3i, and a value of f(0) = -108. The polynomial can be expressed as f(x) = k(x - 2)(x + 2)(x - 3i)(x + 3i), which simplifies to f(x) = k(x^2 - 4)(x^2 + 9). By substituting f(0) into the equation, it is determined that -108 = -36k, allowing for the calculation of k. The discussion emphasizes the importance of understanding polynomial roots and their implications for constructing the polynomial equation. The final equation can be derived once k is solved.
kelly
Messages
2
Reaction score
0
I really need help.
f(x) is a fourth degree polynomial function
f(x) has zeros of plus or minus 2 and plus or minus 3i
f(0)=-108
Find an equation for f(x) in general form
 
Mathematics news on Phys.org
Hello and welcome to MHB, kelly! :D

The general quartic having the zeroes $$x\in\{a,b,c,d\}$$ is given by:

$$f(x)=k(x-a)(x-b)(x-c)(x-d)$$ where $$k\ne0$$

Can you state the family of quartics with the given roots?
 
kelly said:
I really need help.
f(x) is a fourth degree polynomial function
f(x) has zeros of plus or minus 2 and plus or minus 3i
f(0)=-108
Find an equation for f(x) in general form

$f(x)$ is a fourth degree polynomial function, so it is of the form $f(x)=ax^4+bx^3+cx^2+dx+e$.

$f(0)=-108 \Rightarrow e=-108$What can we deduce from the fact that $f(x)$ has zeros of plus or minus $2$ and plus or minus $3i$ ?
 
I am unsure. That was all of the information received. I was absent and i have no idea how to even begin this problem
 
kelly said:
I am unsure. That was all of the information received. I was absent and i have no idea how to even begin this problem

$f(x)$ has zeros of plus or minus $2$ and plus or minus $3i$ means that:

$$f(2)=0 \\ f(-2)=0 \\ f(3i)=0 \\ f(-3i)=0$$

What can we get from the above relations? You just have to substitute the values.
 
kelly said:
I really need help.
f(x) is a fourth degree polynomial function
f(x) has zeros of plus or minus 2 and plus or minus 3i
f(0)=-108
Find an equation for f(x) in general form

MarkFL said:
Hello and welcome to MHB, kelly! :D

The general quartic having the zeroes $$x\in\{a,b,c,d\}$$ is given by:

$$f(x)=k(x-a)(x-b)(x-c)(x-d)$$ where $$k\ne0$$

Can you state the family of quartics with the given roots?
Using MarkFL's method we know that, with a = 2, b = -2, c = 3i, d = -3i, we have
[math]f(x) = k(x - 2)(x + 2)(x - 3i)(x + 3i) = k(x^2 - 4)(x^2 + 9)[/math]

Then [math]f(0) = -108 = k(0^2 - 4)(0^2 + 9) = -36k[/math] and now you can solve for k.

-Dan
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top