Algebra problem (x+(1/x) problem)

  • Thread starter Thread starter terryds
  • Start date Start date
  • Tags Tags
    Algebra
Click For Summary

Homework Help Overview

The problem involves the expression ##a+\frac{1}{a}=\sqrt{3}## and seeks to determine the value of ##a^{2016} + (\frac{1}{a})^{2016}##. The subject area pertains to algebra, specifically dealing with powers and complex numbers.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the lack of real solutions for ##a## and explore the implications of finding complex solutions. There are attempts to derive relationships between powers of ##a## and ##\frac{1}{a}##, with some participants questioning the nature of the roots and their respective contributions to the final expression.

Discussion Status

The discussion has progressed with various approaches being explored, including trigonometric and exponential forms for complex solutions. Some participants have provided insights into the periodicity of powers and their implications for the final result, while others are still seeking clarity on the correct approach to take.

Contextual Notes

Participants note that 2016 is a multiple of 12, which influences their calculations regarding the powers of ##a##. There is also mention of the need to clarify which root to use in the context of complex numbers.

terryds
Messages
392
Reaction score
13

Homework Statement



If ##a+\frac{1}{a}=\sqrt{3}##, then ##a^{2016} + (\frac{1}{a})^{2016} ## equals

A. 0
B. 1
C. √2
D. √3
E. 2

Homework Equations

The Attempt at a Solution


[/B]
I find no real solution for a.
What I can do is just find a^2 + (1/a)^2 which equals 1, a^4 + (1/a)^4 = -1, a^8 + (1/a)^8 = -1, and so on...
Since 2016 is not a square number, I don't know how to determine the value

Is there any theory about problem like this?
Please help
 
Physics news on Phys.org
terryds said:

Homework Statement



If ##a+\frac{1}{a}=\sqrt{3}##, then ##a^{2016} + (\frac{1}{a})^{2016} ## equals

A. 0
B. 1
C. √2
D. √3
E. 2

Homework Equations

The Attempt at a Solution


[/B]
I find no real solution for a.
What I can do is just find a^2 + (1/a)^2 which equals 1, a^4 + (1/a)^4 = -1, a^8 + (1/a)^8 = -1, and so on...
Since 2016 is not a square number, I don't know how to determine the value

Is there any theory about problem like this?
Please help
Start from ##a²+1/{a²}=1##.
Multiply by ##a²## to get rid of the denominator, you get ##a^4 +1 =a²##.
Now notice that 2016 is a multiple of 6. So multiply ##a^4 +1 =a²## again by ##a²## to get ##a^6## in the equation.
 
  • Like
Likes   Reactions: terryds and SammyS
terryds said:

The Attempt at a Solution


[/B]
I find no real solution for a.
Find the complex solution. Write it in trigonometric of exponential form, which makes it easy to rise to power 2016. (2016=25*32 *7)
 
  • Like
Likes   Reactions: terryds
Samy_A said:
Start from ##a²+1/{a²}=1##.
Multiply by ##a²## to get rid of the denominator, you get ##a^4 +1 =a²##.
Now notice that 2016 is a multiple of 6. So multiply ##a^4 +1 =a²## again by ##a²## to get ##a^6## in the equation.

a^6 + a^2 = a^4
a^6 = a^4 - a^2 = (a^2 - 1) - a^2 = -1
a^12 = 1
a^24 = 1
...
a^2016 = 1

So, 1/a^2016 = 1
a^2016 + (1/a)^2016 = 1 + 1 = 2
Thank you
 
ehild said:
Find the complex solution. Write it in trigonometric of exponential form, which makes it easy to rise to power 2016. (2016=25*32 *7)

I'm interested to try this approach..

The solution for a is ##\frac{\sqrt{3}\pm i}{2}##
Should I use the plus or the minus as the root?
If it's plus, ##e^{i\frac{1}{6}\pi}##
If it's minus, ##e^{i\frac{11}{6}\pi}##

And, then what should I do??
 
terryds said:
I'm interested to try this approach..

The solution for a is ##\frac{\sqrt{3}\pm i}{2}##
Should I use the plus or the minus as the root?
If it's plus, ##e^{i\frac{1}{6}\pi}##
If it's minus, ##e^{i\frac{11}{6}\pi}##

And, then what should I do??
What are their 12th power?
 
ehild said:
What are their 12th power?

The 'plus' root^12 = ##e^{i2\pi}= 1##
The 'minus' root^12 = ##e^{i22\pi} = 1##

Okay, since 2016 can be divided by 12, a^2016 = 1
And 1/a^2016 = 1
So, a^2016 + 1/a^2016 = 1+1 = 2

Thanks a lot!
 
terryds said:
The 'plus' root^12 = ##e^{i2\pi}= 1##
The 'minus' root^12 = ##e^{i22\pi} = 1##

Okay, since 2016 can be divided by 12, a^2016 = 1
And 1/a^2016 = 1
So, a^2016 + 1/a^2016 = 1+1 = 2

Thanks a lot!
The 'minus' root^12 = ##e^{-i2\pi} = 1## :smile:
 
  • Like
Likes   Reactions: terryds

Similar threads

Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
5
Views
2K
Replies
8
Views
4K
Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
2K