Equation of hyperbola confocal with ellipse having same principal axes

In summary, the equation of a hyperbola confocal with an ellipse that shares the same principal axes can be expressed in the form \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\), where \(a\) and \(b\) are the semi-major and semi-minor axes of the ellipse, respectively. The hyperbola's foci coincide with those of the ellipse, and both curves exhibit the same orientation along the coordinate axes. This relationship highlights the geometric connection between hyperbolas and ellipses in conic sections.
  • #1
Aurelius120
251
24
Homework Statement
If the ellipse $$4x^2+9y^2+12x+12y+5=0$$ is confocal with a hyperbola having same principal axes then:
Relevant Equations
NA
1000017727.jpg
The equation of ellipse reduces to :
$$(2x+3)^2+(3y+2)^2=8$$
$$\frac{(x+3/2)^2}{8/4}+\frac{(y+2/3)^2}{8/9}=1$$

Center of ellipse =##\left(\frac{-3}{2},\frac{-2}{3}\right)##

##b^2=a^2(1-e^2)=8/9## and ##a^2=8/4##
Therefore ##e=\frac{\sqrt{5}}{3}##

Distance between foci=##\frac{2\sqrt{10}}{3}##
Length of latus rectum of ellipse is 2 times the value of ##y## obtained on putting ##x=ae## and is equal to ##\frac{8\sqrt{2}}{9}##
Now comes the difficult part :
Finding the equation of hyperbola. I simply can't seem to do it.

For confocal hyperbola,
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\text{ and } ae=\frac{\sqrt{10}}{3}$$.
If principal axes have same length they become the same curve so I think principal axes are unequal in length but coincident.

I don't know what to do next ? I think there's insufficient information to get the equation of hyperbola.
 
Physics news on Phys.org
  • #2
Also just to clarify more than one options are correct so all need to be checked
 
  • #3
The question does not imply there is a unique hyperbola meeting those conditions. The question is whether every such hyperbola satisfies A and D.
 
  • Like
Likes Aurelius120
  • #4
haruspex said:
The question does not imply there is a unique hyperbola meeting those conditions. The question is whether every such hyperbola satisfies A and D.
So without knowing the equation of hyperbol, how can A and D be verified?
 
Back
Top