Algebra word problem: finding the distance

  • Context: MHB 
  • Thread starter Thread starter NotaMathPerson
  • Start date Start date
  • Tags Tags
    Algebra Word problem
Click For Summary
SUMMARY

The discussion focuses on solving an algebra word problem involving distance, speed, and time. The key equation derived is \(d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+c\), which leads to the conclusion that the distance \(d\) equals 60 miles. Participants clarify the importance of adding three equations to simplify the problem and correctly interpret the given velocities in minutes rather than hours.

PREREQUISITES
  • Understanding of algebraic equations and variables
  • Knowledge of speed, distance, and time relationships
  • Familiarity with solving systems of equations
  • Ability to manipulate fractions and ratios
NEXT STEPS
  • Study the concept of distance-speed-time relationships in physics
  • Learn about solving systems of linear equations
  • Explore algebraic manipulation techniques for simplifying complex equations
  • Practice additional algebra word problems to reinforce understanding
USEFUL FOR

Students, educators, and anyone seeking to improve their problem-solving skills in algebra, particularly in relation to distance, speed, and time calculations.

NotaMathPerson
Messages
82
Reaction score
0
View attachment 5654

Hello! Please help continue solving tye problem I got stuck.

This is my attemptlet $d=$ length of the circuit
$\frac{60}{a}$mph --- speed for walking
$\frac{60}{b}$mph ----speed for riding
$\frac{60}{c}$mph ---- speed for driving

$d = \frac{60}{a}t_{1}+ \frac{60}{b}t_{2} + \frac{60}{c}t_{3}$

From here I cannot continue. Kindly help me. Thanks!
 

Attachments

  • Q36hallXXIV.jpg
    Q36hallXXIV.jpg
    28.7 KB · Views: 107
Mathematics news on Phys.org
I would begin this problem by drawing a diagram:

View attachment 5655

Now, what we want to find is the distance $d$ where:

$$d=x+y+z$$

Using the information given in the problem, we may write:

$$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=c+b-a$$

$$\frac{y}{a}+\frac{z}{b}+\frac{x}{c}=a+c-b$$

$$\frac{z}{a}+\frac{x}{b}+\frac{y}{c}=b+a-c$$

What do you get when you add these 3 equations?
 

Attachments

  • circuit_prob.png
    circuit_prob.png
    1.7 KB · Views: 106
MarkFL said:
I would begin this problem by drawing a diagram:
Now, what we want to find is the distance $d$ where:

$$d=x+y+z$$

Using the information given in the problem, we may write:

$$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=c+b-a$$

$$\frac{y}{a}+\frac{z}{b}+\frac{x}{c}=a+c-b$$

$$\frac{z}{a}+\frac{x}{b}+\frac{y}{c}=b+a-c$$

What do you get when you add these 3 equations?

This is what I get

$\left(x+y+z\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+c$
 
NotaMathPerson said:
This is what I get

$\left(x+y+z\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+c$

Yes, good! (Yes)

I chose to write this as:

$$d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+c$$

Now, solve for $d$. :)
 
MarkFL said:
Yes, good! (Yes)

I chose to write this as:

$$d\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+c$$

Now, solve for $d$. :)

I thought of it too. But solving for d only gives me letters. In my book the answer is 60 miles. Why is that?

And can you explain why do we need to add the 3 eqns? Thanks.
 
NotaMathPerson said:
I thought of it too. But solving for d only gives me letters. In my book the answer is 60 miles. Why is that?

And can you explain why do we need to add the 3 eqns? Thanks.

I didn't read the question thoroughly (regarding the 3 velocities being given in minutes instead of hours)...what we get instead is the system:

$$\frac{ax}{60}+\frac{by}{60}+\frac{cz}{60}=c+b-a$$

$$\frac{ay}{60}+\frac{bz}{60}+\frac{cx}{60}=a+c-b$$

$$\frac{az}{60}+\frac{bx}{60}+\frac{cy}{60}=b+a-c$$

Now when we add the equations, we obtain:

$$\frac{d}{60}(a+b+c)=a+b+c\implies d=60$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
28
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K