Algebraic Expressions Simplified

  • Context: MHB 
  • Thread starter Thread starter loraboiago
  • Start date Start date
  • Tags Tags
    Expressions
Click For Summary
SUMMARY

The discussion centers on solving the equation 3x(x-5)=0 using the zero-factor property, which states that if a product equals zero, at least one of the factors must be zero. The factors in this case are 3x and (x-5). Setting each factor to zero yields two solutions: x=0 and x=5. The participants clarify the process of isolating x in the equation, demonstrating the application of algebraic principles to find the roots of the equation.

PREREQUISITES
  • Understanding of the zero-factor property in algebra
  • Basic knowledge of algebraic expressions and equations
  • Ability to manipulate and solve linear equations
  • Familiarity with factoring techniques in algebra
NEXT STEPS
  • Study the zero-factor property in greater detail
  • Learn how to factor quadratic equations
  • Explore the concept of roots and their significance in algebra
  • Practice solving polynomial equations using various methods
USEFUL FOR

Students learning algebra, educators teaching algebraic concepts, and anyone looking to improve their problem-solving skills in mathematics.

loraboiago
Messages
3
Reaction score
0
How does 3x or (x-5) equal 0 in the statement 3x(x-5)=0? I don't understand the logic behind it. Thank you!
 
Mathematics news on Phys.org
If you have the statement:

$$a\cdot b=0$$ where $$a\ne b$$

Then the only way it can be true is if either $$a=0$$ or $$b=0$$. This is called the zero-factor property.
 
MarkFL said:
If you have the statement:

$$a\cdot b=0$$ where $$a\ne b$$

Then the only way it can be true is if either $$a=0$$ or $$b=0$$. This is called the zero-factor property.

Thank you Mark for the quick and helpful response. The answer to this question went on to explain "3x(x-5)=0 provides an equation in which at least one of the expressions 3x or (x-5) is equal to 0. That translates into two possible values for x: 0 and 5."

I understand how one can equal 0 (thanks to you!), but how do I calculate the other possible value as being 5?
 
loraboiago said:
Thank you Mark for the quick and helpful response. The answer to this question went on to explain "3x(x-5)=0 provides an equation in which at least one of the expressions 3x or (x-5) is equal to 0. That translates into two possible values for x: 0 and 5."

I understand how one can equal 0 (thanks to you!), but how do I calculate the other possible value as being 5?

I would look at it as 3 factors being equal to zero:

$$3\cdot x\cdot(x-5)=0$$

Now, set all factors involving $x$ equal to zero, and then solve for $x$ in each equation:

$$x=0$$

$$x-5=0$$

The solutions to these equations will give you the solutions to the original equation.
 
MarkFL said:
I would look at it as 3 factors being equal to zero:

$$3\cdot x\cdot(x-5)=0$$

Now, set all factors involving $x$ equal to zero, and then solve for $x$ in each equation:

$$x=0$$

$$x-5=0$$

The solutions to these equations will give you the solutions to the original equation.

Ah got it! You are awesome. Thank you :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K