MHB Algorithmshark's question from Mathematics Stack Exchange

Nono713
Gold Member
MHB
Messages
615
Reaction score
4
This question was posed by algorithmshark and not yet solved on math.stackexchange.com:

Evaluate the following infinite radical:

$$\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \cdots}}}}$$

He has posted some thoughts on his question: real analysis - Evaluating $\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}}$ - Mathematics

Various members (including myself) have shown this expression converges, and a few have expressed doubts about the existence of a closed form solution, but I was curious to see what the MHB community could come up with!

EDIT: huh! An analysis subforum popped into existence a few minutes ago. Can we move this there, please?

EDIT [Ackbach]: Your wish is my command.

EDIT: Thank you!
 
Last edited:
Mathematics news on Phys.org
Bacterius said:
This question was posed by algorithmshark and not yet solved on math.stackexchange.com:
He has posted some thoughts on his question: real analysis - Evaluating $\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}}$ - Mathematics

Various members (including myself) have shown this expression converges, and a few have expressed doubts about the existence of a closed form solution, but I was curious to see what the MHB community could come up with!

EDIT: huh! An analysis subforum popped into existence a few minutes ago. Can we move this there, please?

EDIT [Ackbach]: Your wish is my command.

The procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/#post2492

... allows a comfortable solution of the problem. The expression $\displaystyle \sqrt{1+\sqrt{2 + \sqrt{4 +\sqrt{8+...}}}}$ seems to be the limit of the sequence solution of the difference equation...

$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2\ a_{n}}},\ a_{0}=1$ (1)

The (1) can be written as...

$\displaystyle \Delta_{n}= a_{n+1}-a_{n} = \sqrt{1+\sqrt{2\ a_{n}}} - a_{n} = f(a_{n})$ (2)... and the function f(x) is illustrated here... https://www.physicsforums.com/attachments/626._xfImport

There is only one 'attractive fixed point' in $\displaystyle x_{0} \sim 1.68377$ and pratically any initial value $a_{0}>0$ produce a sequence converging to $x_{0}$... Kind regards $\chi$ $\sigma$

As pointed out by IlikeSerena there is an error in (1) and the right solution is published in a successive post... sorry!...
 

Attachments

  • MSP8291a56e9b16i2d7fh9000035h1acf6bd64114c.JPG
    MSP8291a56e9b16i2d7fh9000035h1acf6bd64114c.JPG
    4.7 KB · Views: 92
Last edited:
chisigma said:
$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2\ a_{n}}},\ a_{0}=1$ (1)

Equation (1) doesn't seem to match with the sequence...
 
Last edited:
The procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/#post2492

... allows a comfortable solution of the problem. The expression $\displaystyle \sqrt{1+\sqrt{2 + \sqrt{4 +\sqrt{8+...}}}}$ is the limit of the sequence solution of the difference equation...

$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2}\ a_{n}},\ a_{0}=1$ (1)

The (1) can be written as...

$\displaystyle \Delta_{n}= a_{n+1}-a_{n} = \sqrt{1+\sqrt{2}\ a_{n}} - a_{n} = f(a_{n})$ (2)... and the function f(x) is illustrated here...

https://www.physicsforums.com/attachments/628._xfImportThere is only one 'attractive fixed point' in $\displaystyle x_{0}= \frac{1+\sqrt{3}}{\sqrt{2}} \sim 1.93185$ and pratically any initial value $a_{0}>0$ produce a sequence converging to $x_{0}$... Kind regards $\chi$ $\sigma$
 

Attachments

  • MSP6151a56g2a1eg40157i00000gf75e4fab5b6a8b.JPG
    MSP6151a56g2a1eg40157i00000gf75e4fab5b6a8b.JPG
    5.7 KB · Views: 83
Good approach chisigma, though it doesn't work because your recurrence isn't correct. It seems to produce this:

$$\sqrt{1 + \sqrt{2 + \sqrt{8 + \sqrt{64 + \cdots}}}}$$

I think a similar attempt was made in the original thread, but people noted it didn't work because you couldn't make the recurrence compatible with both the doubling at each successive level and the square roots, since they don't cancel at the same rate. I could have calculated your recurrence incorrectly, though.

The actual result is around 1.783 (by computation)
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top