Algorithmshark's question from Mathematics Stack Exchange

  • Context: MHB 
  • Thread starter Thread starter Nono713
  • Start date Start date
  • Tags Tags
    Exchange Mathematics
Click For Summary
SUMMARY

The infinite radical expression $$\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \cdots}}}}$$ converges, as established by various forum members, although doubts remain regarding the existence of a closed form solution. The limit of the sequence defined by the difference equation $$a_{n+1}= \sqrt{1+\sqrt{2\ a_{n}}},\ a_{0}=1$$ approaches an attractive fixed point approximately equal to 1.93185. However, errors in the recurrence relation have been noted, leading to incorrect interpretations of the sequence. The actual numerical result of the expression is estimated to be around 1.783.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with difference equations
  • Basic knowledge of fixed points in mathematical analysis
  • Experience with numerical approximation techniques
NEXT STEPS
  • Study the convergence of infinite series in real analysis
  • Learn about difference equations and their applications
  • Explore fixed point theory and its implications in mathematical analysis
  • Investigate numerical methods for approximating limits of sequences
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in the convergence properties of infinite radicals and difference equations.

Nono713
Gold Member
MHB
Messages
615
Reaction score
4
This question was posed by algorithmshark and not yet solved on math.stackexchange.com:

Evaluate the following infinite radical:

$$\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \cdots}}}}$$

He has posted some thoughts on his question: real analysis - Evaluating $\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}}$ - Mathematics

Various members (including myself) have shown this expression converges, and a few have expressed doubts about the existence of a closed form solution, but I was curious to see what the MHB community could come up with!

EDIT: huh! An analysis subforum popped into existence a few minutes ago. Can we move this there, please?

EDIT [Ackbach]: Your wish is my command.

EDIT: Thank you!
 
Last edited:
Physics news on Phys.org
Bacterius said:
This question was posed by algorithmshark and not yet solved on math.stackexchange.com:
He has posted some thoughts on his question: real analysis - Evaluating $\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}}$ - Mathematics

Various members (including myself) have shown this expression converges, and a few have expressed doubts about the existence of a closed form solution, but I was curious to see what the MHB community could come up with!

EDIT: huh! An analysis subforum popped into existence a few minutes ago. Can we move this there, please?

EDIT [Ackbach]: Your wish is my command.

The procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/#post2492

... allows a comfortable solution of the problem. The expression $\displaystyle \sqrt{1+\sqrt{2 + \sqrt{4 +\sqrt{8+...}}}}$ seems to be the limit of the sequence solution of the difference equation...

$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2\ a_{n}}},\ a_{0}=1$ (1)

The (1) can be written as...

$\displaystyle \Delta_{n}= a_{n+1}-a_{n} = \sqrt{1+\sqrt{2\ a_{n}}} - a_{n} = f(a_{n})$ (2)... and the function f(x) is illustrated here... https://www.physicsforums.com/attachments/626._xfImport

There is only one 'attractive fixed point' in $\displaystyle x_{0} \sim 1.68377$ and pratically any initial value $a_{0}>0$ produce a sequence converging to $x_{0}$... Kind regards $\chi$ $\sigma$

As pointed out by IlikeSerena there is an error in (1) and the right solution is published in a successive post... sorry!...
 

Attachments

  • MSP8291a56e9b16i2d7fh9000035h1acf6bd64114c.JPG
    MSP8291a56e9b16i2d7fh9000035h1acf6bd64114c.JPG
    4.7 KB · Views: 102
Last edited:
chisigma said:
$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2\ a_{n}}},\ a_{0}=1$ (1)

Equation (1) doesn't seem to match with the sequence...
 
Last edited:
The procedure described in...

http://www.mathhelpboards.com/f15/difference-equation-tutorial-draft-part-i-426/#post2492

... allows a comfortable solution of the problem. The expression $\displaystyle \sqrt{1+\sqrt{2 + \sqrt{4 +\sqrt{8+...}}}}$ is the limit of the sequence solution of the difference equation...

$\displaystyle a_{n+1}= \sqrt{1+\sqrt{2}\ a_{n}},\ a_{0}=1$ (1)

The (1) can be written as...

$\displaystyle \Delta_{n}= a_{n+1}-a_{n} = \sqrt{1+\sqrt{2}\ a_{n}} - a_{n} = f(a_{n})$ (2)... and the function f(x) is illustrated here...

https://www.physicsforums.com/attachments/628._xfImportThere is only one 'attractive fixed point' in $\displaystyle x_{0}= \frac{1+\sqrt{3}}{\sqrt{2}} \sim 1.93185$ and pratically any initial value $a_{0}>0$ produce a sequence converging to $x_{0}$... Kind regards $\chi$ $\sigma$
 

Attachments

  • MSP6151a56g2a1eg40157i00000gf75e4fab5b6a8b.JPG
    MSP6151a56g2a1eg40157i00000gf75e4fab5b6a8b.JPG
    5.7 KB · Views: 95
Good approach chisigma, though it doesn't work because your recurrence isn't correct. It seems to produce this:

$$\sqrt{1 + \sqrt{2 + \sqrt{8 + \sqrt{64 + \cdots}}}}$$

I think a similar attempt was made in the original thread, but people noted it didn't work because you couldn't make the recurrence compatible with both the doubling at each successive level and the square roots, since they don't cancel at the same rate. I could have calculated your recurrence incorrectly, though.

The actual result is around 1.783 (by computation)
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
17K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K