Alternating Series Estimation Theorem

Click For Summary
The discussion focuses on using the power series for ln(x + 1) and the Alternating Series Estimation Theorem to determine the minimum number of terms needed to approximate ln(2) with an error less than 3/1000. Participants express confusion over the correct series expansion and how to simplify the resulting inequality to find the specific term count. It is clarified that the correct series for ln(1+x) is simpler than initially presented, and there is a mistake in using 2^n instead of 1^n in the calculations. The conversation emphasizes the importance of correctly identifying the series and accurately applying the estimation theorem to solve the problem effectively.
jlmccart03
Messages
175
Reaction score
9

Homework Statement


Using the power series for ln(x + 1) and the Estimation Theorem for the Alternating Series, we conclude that the least number of terms in the series needed to approximate ln 2 with error < 3/1000 is: (i) 333 (ii) 534 (iii) 100 (iv) 9 (v) 201

Homework Equations


ln(x+1) = Σ(-1)^nx^n/n!

The Attempt at a Solution


I know that the alternating series estimation thm is |Sn-S| ≤ (estimation) which is 3/1000. I get x to be equal to 1 since we want ln(2), but when I setup the equation I get lost on how to simplify this to a specific n value. (Calculators are not allowed on exam so I am rusty with algebra).

I get (-1)^n+1 * 2^n/(n+1)! ≤ 3/1000 which gives 2^n ≤ 3/1000 * (n+1) and I can't figure how to get the n in the exponent down without using ln yet the answers are specific numbers.
 
Physics news on Phys.org
jlmccart03 said:

Homework Statement


Using the power series for ln(x + 1) and the Estimation Theorem for the Alternating Series, we conclude that the least number of terms in the series needed to approximate ln 2 with error < 3/1000 is: (i) 333 (ii) 534 (iii) 100 (iv) 9 (v) 201

Homework Equations


ln(x+1) = Σ(-1)^nx^n/n!

The Attempt at a Solution


I know that the alternating series estimation thm is |Sn-S| ≤ (estimation) which is 3/1000. I get x to be equal to 1 since we want ln(2), but when I setup the equation I get lost on how to simplify this to a specific n value. (Calculators are not allowed on exam so I am rusty with algebra).

I get (-1)^n+1 * 2^n/(n+1)! ≤ 3/1000 which gives 2^n ≤ 3/1000 * (n+1) and I can't figure how to get the n in the exponent down without using ln yet the answers are specific numbers.
For an alternating series, the estimated error is less than the magnitude of the term following the last one.
What is the Taylor series of ln(x+1) around x=0?
 
jlmccart03 said:

Homework Statement


Using the power series for ln(x + 1) and the Estimation Theorem for the Alternating Series, we conclude that the least number of terms in the series needed to approximate ln 2 with error < 3/1000 is: (i) 333 (ii) 534 (iii) 100 (iv) 9 (v) 201

Homework Equations


ln(x+1) = Σ(-1)^nx^n/n!

The Attempt at a Solution


I know that the alternating series estimation thm is |Sn-S| ≤ (estimation) which is 3/1000. I get x to be equal to 1 since we want ln(2), but when I setup the equation I get lost on how to simplify this to a specific n value. (Calculators are not allowed on exam so I am rusty with algebra).

I get (-1)^n+1 * 2^n/(n+1)! ≤ 3/1000 which gives 2^n ≤ 3/1000 * (n+1) and I can't figure how to get the n in the exponent down without using ln yet the answers are specific numbers.

(1) You have the wrong series; your series is the expansion of ##e^{-x}##, which is not what was asked. The expansion of ##\ln(1+x)## is a lot simpler, and produces a problem solvable easily in an exam setting without a calculator.
(2) You say you need ##x = 1##, so how did ##1^n## become ##2^n##?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
7
Views
2K