An Integral with Fractional Part

Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral $$\int_0^1 x\left\{\frac{1}{x}\right\}\, dx$$, where ##\{\frac{1}{x}\}## represents the fractional part of ##1/x##. The conversation includes preliminary estimations and manipulations of summations related to the integral.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • One participant provides a preliminary estimation, noting that ##\left\{ \frac{1}{x}\right\}<1## and suggesting that the integral is bounded by 0 and ##\frac{1}{2}##.
  • Another participant discusses a manipulation of a summation variable, indicating a shift in the summation index and extending the sum, although the relevance to the integral is not fully clarified.

Areas of Agreement / Disagreement

The discussion does not appear to reach a consensus, as participants are exploring different aspects of the integral and its related summations without resolving the evaluation of the integral itself.

Contextual Notes

The discussion includes preliminary estimations and manipulations that may depend on specific assumptions about the behavior of the fractional part function, which are not fully articulated.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Evaluate the integral $$\int_0^1 x\left\{\frac{1}{x}\right\}\, dx$$ where ##\{\frac{1}{x}\}## denotes the fractional part of ##1/x##.
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
A prelinary estimation.
\left\{ \frac{1}{x}\right\}&lt;1
0&lt;\int_0^1 x\left\{ \frac{1}{x}\right\}dx &lt; \int_0^1 xdx=\frac{1}{2}
 
For ##y \ge 0##, we can rewrite the fractional part as ##\{y\} = y - \lfloor y \rfloor##. Thus
$$
\begin{align*}
\int_0^1 x \left\{ \frac{1}{x} \right\} dx &= \int_0^1 x \left( \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor \right) dx \\
&= \int_0^1 dx - \int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx \\
&= 1 - \int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx
\end{align*}
$$
Setting ##y \equiv 1/x##, ##dy = -1/x^2 dx##, we have
$$
\begin{align*}
\int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx &= \int_\infty^1 \frac{1}{y} \left\lfloor y \right\rfloor \left(-\frac{1}{y^2}\right) dy\\
&= \int_1^\infty \frac{1}{y^3} \left\lfloor y \right\rfloor dy
\end{align*}
$$
Since ##\left\lfloor y \right\rfloor## is piecewise constant, the integral can be written as the sum of integrals
$$
\begin{align*}
\int_1^\infty \frac{1}{y^3} \left\lfloor y \right\rfloor dy &= \int_1^2 \frac{1}{y^3} 1 dy +
\int_2^3 \frac{1}{y^3} 2 dy + \int_3^4 \frac{1}{y^3} 3 dy + \cdots \\
&= \sum_{n=1}^{\infty} \int_n^{n+1} \frac{1}{y^3} n dy \\
&= \sum_{n=1}^{\infty} n \int_n^{n+1} \frac{1}{y^3} dy \\
&= \sum_{n=1}^{\infty} n \left[ - \frac{1}{2y^2} \right]_n^{n+1} \\
&= \sum_{n=1}^{\infty} n \left[ \frac{1}{2n^2} - \frac{1}{2(n+1)^2}\right]
\end{align*}
$$
Here I have to admit that I cheated because I couldn't find a better way to write the sum, I thus couldn't find a simple expression for it. Mathematica told me it is ##\pi^2/12##, which is nice, but I still don't see how to rewrite the sum. Anyway, using this result, we finally find
$$
\begin{align*}
\int_0^1 x \left\{ \frac{1}{x} \right\} dx &= 1 - \frac{\pi^2}{12}
\end{align*}
$$
 
  • Like
Likes   Reactions: julian and anuttarasammyak
@DrClaude you do a shift in the summation variable ##n## followed by extending the sum:
##\sum_{n=1}^\infty n \frac{1}{2 (n+1)^2} = \sum_{n=2}^\infty (n-1) \frac{1}{2 n^2} = \sum_{n=1}^\infty (n-1) \frac{1}{2 n^2}##.
 
Last edited:
  • Like
Likes   Reactions: DrClaude

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K