An Integral with Fractional Part

Click For Summary
SUMMARY

The integral $$\int_0^1 x\left\{\frac{1}{x}\right\}\, dx$$ evaluates the fractional part of $$\frac{1}{x}$$ over the interval from 0 to 1. The discussion confirms that $$\left\{ \frac{1}{x}\right\} < 1$$ and establishes that $$0 < \int_0^1 x\left\{ \frac{1}{x}\right\}dx < \frac{1}{2}$$. A summation technique is employed, shifting the variable $$n$$ and extending the sum to derive $$\sum_{n=1}^\infty n \frac{1}{2 (n+1)^2}$$, which simplifies to $$\sum_{n=1}^\infty (n-1) \frac{1}{2 n^2}$$.

PREREQUISITES
  • Understanding of fractional parts in mathematics
  • Knowledge of integral calculus
  • Familiarity with infinite series and summation techniques
  • Basic proficiency in mathematical notation and expressions
NEXT STEPS
  • Study the properties of fractional parts in mathematical analysis
  • Learn techniques for evaluating improper integrals
  • Explore convergence of infinite series, particularly $$\sum_{n=1}^\infty \frac{1}{n^p}$$
  • Investigate advanced integration techniques, such as integration by parts
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integral evaluation and series convergence techniques.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Evaluate the integral $$\int_0^1 x\left\{\frac{1}{x}\right\}\, dx$$ where ##\{\frac{1}{x}\}## denotes the fractional part of ##1/x##.
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
A prelinary estimation.
\left\{ \frac{1}{x}\right\}&lt;1
0&lt;\int_0^1 x\left\{ \frac{1}{x}\right\}dx &lt; \int_0^1 xdx=\frac{1}{2}
 
For ##y \ge 0##, we can rewrite the fractional part as ##\{y\} = y - \lfloor y \rfloor##. Thus
$$
\begin{align*}
\int_0^1 x \left\{ \frac{1}{x} \right\} dx &= \int_0^1 x \left( \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor \right) dx \\
&= \int_0^1 dx - \int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx \\
&= 1 - \int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx
\end{align*}
$$
Setting ##y \equiv 1/x##, ##dy = -1/x^2 dx##, we have
$$
\begin{align*}
\int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor dx &= \int_\infty^1 \frac{1}{y} \left\lfloor y \right\rfloor \left(-\frac{1}{y^2}\right) dy\\
&= \int_1^\infty \frac{1}{y^3} \left\lfloor y \right\rfloor dy
\end{align*}
$$
Since ##\left\lfloor y \right\rfloor## is piecewise constant, the integral can be written as the sum of integrals
$$
\begin{align*}
\int_1^\infty \frac{1}{y^3} \left\lfloor y \right\rfloor dy &= \int_1^2 \frac{1}{y^3} 1 dy +
\int_2^3 \frac{1}{y^3} 2 dy + \int_3^4 \frac{1}{y^3} 3 dy + \cdots \\
&= \sum_{n=1}^{\infty} \int_n^{n+1} \frac{1}{y^3} n dy \\
&= \sum_{n=1}^{\infty} n \int_n^{n+1} \frac{1}{y^3} dy \\
&= \sum_{n=1}^{\infty} n \left[ - \frac{1}{2y^2} \right]_n^{n+1} \\
&= \sum_{n=1}^{\infty} n \left[ \frac{1}{2n^2} - \frac{1}{2(n+1)^2}\right]
\end{align*}
$$
Here I have to admit that I cheated because I couldn't find a better way to write the sum, I thus couldn't find a simple expression for it. Mathematica told me it is ##\pi^2/12##, which is nice, but I still don't see how to rewrite the sum. Anyway, using this result, we finally find
$$
\begin{align*}
\int_0^1 x \left\{ \frac{1}{x} \right\} dx &= 1 - \frac{\pi^2}{12}
\end{align*}
$$
 
  • Like
Likes   Reactions: julian and anuttarasammyak
@DrClaude you do a shift in the summation variable ##n## followed by extending the sum:
##\sum_{n=1}^\infty n \frac{1}{2 (n+1)^2} = \sum_{n=2}^\infty (n-1) \frac{1}{2 n^2} = \sum_{n=1}^\infty (n-1) \frac{1}{2 n^2}##.
 
Last edited:
  • Like
Likes   Reactions: DrClaude

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K