MHB Anakin1369's Limit of (tanh(x))^x: Yahoo Answers

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Form Limit
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

What is the limit of (tanh(x))^x as x approaches infinity?

Hi. If you could provide me with the process that leads to the answer that would really help. Thanks.

Here is a link to the question:

What is the limit of (tanh(x))^x as x approaches infinity? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: Anakin1369's question at Yahoo! Answers regardina limit having indeterminate form

Hello Anakin1369,

We are given to evaluate:

$$\lim_{x\to\infty}\tanh^x(x)=L$$

Observing that we have the indeterminate form $$1^{\infty}$$, I recommend taking the natural log of both sides:

$$\ln\left(\lim_{x\to\infty}\tanh^x(x) \right)=\ln(L)$$

Since the natural log function is continuous, we may "bring it inside the limit" to get:

$$\lim_{x\to\infty}\ln\left(\tanh^x(x) \right)=\ln(L)$$

Now, using the log property $$\log_a\left(b^c \right)=c\cdot\log_a(b)$$ we may write:

$$\lim_{x\to\infty}x\ln\left(\tanh(x) \right)=\ln(L)$$

Bringing the $x$ out front down into the denominator, we have:

$$\lim_{x\to\infty}\frac{\ln\left(\tanh(x) \right)}{\frac{1}{x}}=\ln(L)$$

Now we have the indeterminate form $$\frac{0}{0}$$, and so application of L'Hôpital's rules gives:

$$\lim_{x\to\infty}\frac{\text{csch}(x)\text{sech}(x)}{-\frac{1}{x^2}}=\ln(L)$$

$$-\lim_{x\to\infty}\frac{x^2}{\sinh(x)\cosh(x)}=\ln(L)$$

The exponential function in the denominator "dominates" the quadratic in the numerator, hence we have:

$$0=\ln(L)$$

Converting from logarithmic to exponential form, we then find:

$$L=e^0=1$$

and so we may conclude:

$$\lim_{x\to\infty}\tanh^x(x)=1$$

To Anakin1369 and any other guests viewing this topic, I invite and encourage you to post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top