MHB Analysis of Convergence for Series a) and b)

Click For Summary
The series a) $\sum \frac{1}{n!} \left(\frac{n}{e}\right)^n$ diverges, as shown by approximating it with Stirling's formula and comparing it to a divergent series. Conversely, the series b) $\sum \frac{(-1)^n}{n!} \left(\frac{n}{e}\right)^n$ converges based on the Leibniz test for alternating series. The discussion includes a correction regarding the limits and approximations used in the analysis, emphasizing the importance of accurate inequalities in convergence tests. The final consensus is that the initial solution for series a) was incorrect, while the conclusion for series b) is validated. Overall, the analysis highlights the necessity of careful mathematical reasoning in determining series convergence.
alexmahone
Messages
303
Reaction score
0
Do the following series converge or diverge?

a) $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n$

b) $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$

My attempt:

a) $\displaystyle\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx\frac{1}{\sqrt{2\pi n}}$ (Stirling’s formula)

$\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{1}{\sqrt{2\pi n}}$

Since $\displaystyle\sum\frac{1}{\sqrt{2\pi n}}$ diverges, $\displaystyle \sum\frac{1}{n!}\left(\frac{n}{e}\right)$ also diverges.

b) $\displaystyle\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx\frac{(-1)^n}{\sqrt{2\pi n}}$ (Stirling’s formula)

$\displaystyle \sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n\approx \sum\frac{(-1)^n}{\sqrt{2\pi n}}$

By Leibniz's test for alternating series, $\displaystyle\sum\frac{(-1)^n}{\sqrt{2\pi n}}$ converges.

So, $\displaystyle\sum\frac{(-1)^n}{n!}\left(\frac{n}{e}\right)^n$ also converges.
 
Last edited:
Physics news on Phys.org
Is my solution correct?
 
chisigma said:
Setting $\displaystyle a_{n}= \frac{1}{n!}\ (\frac{n}{e})^{n}$ You have...

$\displaystyle \ln a_{n}= n\ (\ln n -\ln e) -\ln n!= n\ (\ln n-1) - \sum_{k=1}^{n} \ln k$ (1)

Now You have...

$\displaystyle n\ (\ln n-1)= \int_{1}^{n} \ln x\ dx > \sum_{k=1}^{n} \ln k$ (2)

... so that is...

$\displaystyle \lim_{n \rightarrow \infty} \ln a_{n} >0 \implies \lim_{n \rightarrow \infty} a_{n} >1$ (3)

... and the necessary condition for convergence is not verified...

Kind regards

$\chi$ $\sigma$

But what's wrong with my solution?
 
My previous post was wrong because I incorrectly wrote $\displaystyle \int_{1}^{n} \ln x\ dx > \sum_{k=1}^{n} \ln k$ and is $\displaystyle \int_{1}^{n} \ln x\ dx < \sum_{k=1}^{n} \ln k$...

Very sorry!... any thanks is absolutely a nonsense!...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
Writing $\displaystyle \lim_{n \rightarrow \infty} \frac{\sqrt{2\ \pi\ n}}{n!}\ (\frac{n}{e})^{n}=1$ doesn't mean $\displaystyle \frac{1}{n!}\ (\frac{n}{e})^{n}= \frac{1}{\sqrt{2\ \pi\ n}}$...

Kind regards

$\chi$ $\sigma$

But aren't they approximately equal for large $n$?

---------- Post added at 03:27 AM ---------- Previous post was at 03:09 AM ----------

chisigma said:
My previous post was wrong because I incorrectly wrote $\displaystyle \int_{1}^{n} \ln x\ dx > \sum_{k=1}^{n} \ln k$ and is $\displaystyle \int_{1}^{n} \ln x\ dx < \sum_{k=1}^{n} \ln k$...

Very sorry!... any thanks is absolutely a nonsense!...

Kind regards

$\chi$ $\sigma$

Does that mean my solution is right?
 
Alexmahone said:
But aren't they approximately equal for large $n$?

---------- Post added at 03:27 AM ---------- Previous post was at 03:09 AM ----------



Does that mean my solution is right?

Rewriting my previous post we have...

$\displaystyle \int_{1}^{n} \ln x\ dx - \sum_{k=1}^{n} \ln k = \sum_{k=1}^{n} \int_{k}^{k+1} (ln x - \ln (k+1))\ dx \sim - \sum_{k=1}^{n} \frac{1}{k+1}$

... so that is $\displaystyle \lim_{n \rightarrow \infty} a_{n}=0$ and Your solution is probably correct...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K