How does the ratio test fail and the root test succeed here?

In summary, the ratio test can fail to determine the convergence or divergence of a series when the limit of the ratio of consecutive terms approaches 1, leading to an inconclusive result. In contrast, the root test is often more effective in such cases, as it examines the nth root of the absolute value of the terms. If this limit is less than 1, the series converges, while if it is greater than 1, the series diverges. Thus, the root test provides clearer conclusions in scenarios where the ratio test falls short.
  • #1
psie
275
32
TL;DR Summary
I'm studying Spivak's Calculus, chapter 23, problem 7. There he introduces the root test and he gives an example of a series for which the ratio test fails but the root test works. I struggle with verifying this.
The series that is given is $$\frac12+\frac13+\left(\frac12\right)^2+\left(\frac13\right)^2+\left(\frac12\right)^3+\left(\frac13\right)^3+\ldots.$$ Now, it's easy to see these are two separate geometric series, however, Spivak claims the ratio test fails because the ratio of successive terms does not approach a limit. I have figured out that $$a_{2n-1}=\left(\frac12\right)^{n},\quad a_{2n}=\left(\frac13\right)^{n},\quad n=1,2,\ldots.$$ For the ratio test, we should have that the fraction ##\left|\frac{a_{n}}{a_{n-1}} \right| ## approaches some finite limit or diverges to infinity. In this case, if ##n## is even we have that the fraction is ##\left(\frac23\right)^n\to 0## as ##n\to\infty##. If ##n## is odd, we have ##\left(\frac32\right)^n\frac13\to\infty## as ##n\to\infty##. This behavior confuses me. What can we conclude from this?

The root test given in the exercise is that if ##a_n\geq0## and ##\lim\limits_{n\to\infty}\sqrt[n]{a_n}=r##, then ##\sum_{n=1}^\infty a_n## converges if ##r<1## and diverges if ##r>1##. Apparently this test should work, but I do not see how when the even indexed subsequence and the odd indexed subsequence seem to converge to different limits, namely ##\frac13## and ##\frac12##.
 
Physics news on Phys.org
  • #2
How does Spivak define the root test? The following definition uses the ##\lim \sup##.

https://en.wikipedia.org/wiki/Root_test

That said, it seems more logical to me to use the convergence of both subseries. It can't be hard to prove that if both ##\sum_{n = 1}^{\infty} a_n## and ##\sum_{n = 1}^{\infty} b_n## converge, then ##a_1 + b_1 + a_2 + b_2 + a_3 + b_3 \dots## must also converge.

PS and in this case, it's not hard actually to compute the limit of the series!
 
  • Like
Likes psie
  • #3
The root test is stronger than the ratio test, at least if ##\limsup##-version is used. It is based on this inequality: ##\liminf(a_{n+1}/a_n) \le \liminf a_n^{1/n} \le \limsup a_n^{1/n} \le \limsup(a_{n+1}/a_n)##, if every ## a_n## is a positive real number.
 
  • #4
PeroK said:
How does Spivak define the root test?
Spivak defines the root test first as I defined it above, without the ##\limsup##. Then, however, he adds that we can replace the limit with ##\limsup## and calls it the "delicate root test". He probably means that if we use the root test with ##\limsup## on the series above, then we get that ##\limsup\limits_{n\to\infty}|a_n|^{1/n}=\frac12##, which is less than ##1##, so we have convergence.

PeroK said:
That said, it seems more logical to me to use the convergence of both subseries. It can't be hard to prove that if both ##\sum_{n = 1}^{\infty} a_n## and ##\sum_{n = 1}^{\infty} b_n## converge, then ##a_1 + b_1 + a_2 + b_2 + a_3 + b_3 \dots## must also converge.
I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?
 
  • #5
psie said:
Spivak defines the root test first as I defined it above, without the ##\limsup##. Then, however, he adds that we can replace the limit with ##\limsup## and calls it the "delicate root test". He probably means that if we use the root test with ##\limsup## on the series above, then we get that ##\limsup\limits_{n\to\infty}|a_n|^{1/n}=\frac12##, which is less than ##1##, so we have convergence.I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?
The ratio test is inconclusive, as every other term in the sequence of ratios is ##\frac 1 2(\frac 3 2)^n##.
 
  • #6
psie said:
I agree it would be easier to use the convergence of both subseries, but I'm trying to understand what Spivak means by the ratio test failing. We have that ##\left|\frac{a_{n}}{a_{n-1}} \right|## converges to ##0## if ##n## is even and ##\infty## if ##n## is odd, as ##n\to\infty##. Can we conclude from this that ##\lim\limits_{n\to\infty}\left|\frac{a_{n}}{a_{n-1}} \right|## does not equal a finite number or infinity?

The correct conclusion is that this limit does not exist.
 
  • Like
Likes SammyS and psie
  • #7
I analyze whole question and I think here limit will not exist.
 

FAQ: How does the ratio test fail and the root test succeed here?

What is the ratio test and how does it work?

The ratio test is a method used to determine the convergence or divergence of an infinite series. It involves taking the limit of the absolute value of the ratio of consecutive terms in the series. If the limit is less than 1, the series converges; if it is greater than 1, the series diverges; and if the limit equals 1, the test is inconclusive.

What is the root test and how does it differ from the ratio test?

The root test involves taking the limit of the n-th root of the absolute value of the terms in the series. Similar to the ratio test, if the limit is less than 1, the series converges; if it is greater than 1, the series diverges; and if it equals 1, the test is inconclusive. The root test can be more effective for series where terms involve exponentials or powers.

In what scenarios does the ratio test fail?

The ratio test can fail in situations where the limit of the ratio of consecutive terms equals 1. This often occurs in series with factorials or oscillating terms, where the growth rates do not provide a clear indication of convergence or divergence.

When is the root test more successful than the ratio test?

The root test is often more successful in cases where the terms of the series involve powers or exponential functions. For example, series like the geometric series or those with terms raised to the n-th power can provide clearer results with the root test, as it directly assesses the growth of the terms.

Can you provide an example where the ratio test fails but the root test succeeds?

Consider the series ∑ (n!)/(n^n). The ratio test yields a limit of 1, making it inconclusive. However, applying the root test gives the limit of the n-th root of the terms, which converges to 0, indicating that the series converges. This illustrates a scenario where the ratio test fails while the root test succeeds.

Similar threads

Replies
3
Views
324
Replies
3
Views
1K
Replies
2
Views
1K
Replies
17
Views
3K
Replies
8
Views
1K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top