Analytic continuation of the zeta function

Click For Summary
SUMMARY

The discussion centers on Riemann's analytic continuation of the zeta function, specifically its definition for all complex numbers \( s \) using the integral representation involving the Gamma function. The integral representation is shown to converge under certain conditions, leading to the conclusion that while Riemann's continuation is valid for \( \text{Re}[s] > 1 \), it does not extend to all \( s \) in the complex plane. The confusion arises from the assumption that the integral converges universally, which is clarified by noting that the integral around the circle of radius \( \delta \) does not approach zero for all \( s \).

PREREQUISITES
  • Understanding of complex analysis, particularly analytic functions.
  • Familiarity with the Riemann zeta function and its properties.
  • Knowledge of the Gamma function and its role in complex integrals.
  • Basic concepts of contour integration and convergence of integrals.
NEXT STEPS
  • Study the properties of the Riemann zeta function in detail, focusing on its analytic continuation.
  • Learn about the implications of the Gamma function in complex analysis.
  • Explore contour integration techniques, particularly in relation to the zeta function.
  • Investigate the convergence criteria for integrals in complex analysis.
USEFUL FOR

Mathematicians, students of complex analysis, and researchers interested in number theory and the properties of the Riemann zeta function.

galoisjr
Messages
36
Reaction score
0
I was reading through the first chapter of Edwards' book on the zeta function, and I'm a little confused about Riemann's original continuation of zeta to all of the complex plane... The zeta function is supposed to be defined for all s in the set of complex numbers by

\zeta \left( s \right) = \frac{{\Gamma \left( {1 - s} \right)}}{{2\pi i}}\oint\limits_\gamma {\frac{{{{\left( { - u} \right)}^s}}}{{{e^u} - 1}}} \cdot \frac{{du}}{u}

where

\begin{array}{l}<br /> \gamma = {L^ + } \cup {C_\delta } \cup {L^ - } \cup {C_R}\\<br /> {L^ + } = \left\{ {u = x + i\delta |R \ge x \ge \delta } \right\}\\<br /> {C_\delta } = \left\{ {u = \delta {e^{i\vartheta }}|0 \le \vartheta &lt; 2\pi } \right\}\\<br /> {L^ - } = \left\{ {u = x - i\delta |\delta \le x \le R} \right\}\\<br /> {C_R} = \left\{ {u = R{e^{i\varphi }}|2\pi &gt; \varphi \ge 0} \right\}<br /> \end{array}

Its easy enough to show that the integrands along both circles are constant and therefore the second and fourth integrals approach zero. Then, as

\delta \to 0 \wedge R \to \infty

we have

\zeta \left( s \right) = \frac{{\Gamma \left( {1 - s} \right)}}{{2\pi i}}\int\limits_{ + \infty }^{ + \infty } {\frac{{{{\left( { - x} \right)}^s}}}{{{e^x} - 1}}} \cdot \frac{{dx}}{x}

and since the two lines are on either side of the branch cut,

\zeta \left( s \right) = \Gamma \left( {1 - s} \right)\frac{{\left( {{e^{i\pi s}} - {e^{ - i\pi s}}} \right)}}{{2i\pi }}\int\limits_0^\infty {\frac{{{x^{s - 1}}}}{{{e^x} - 1}}dx}

\zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\int\limits_0^\infty {\frac{{{x^{s - 1}}}}{{{e^x} - 1}}dx}

Next,

\begin{array}{l}<br /> \zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\int\limits_0^\infty {\frac{{{x^{s - 1}}}}{{{e^x} - 1}}dx} \\<br /> \zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\int\limits_0^\infty {\frac{{{x^{s - 1}}}}{{{e^x}}} \cdot \frac{1}{{1 - {e^{ - x}}}}dx} \\<br /> \end{array}

in which the geometric series converges to the integrand on the interval and also converges to zero absolutely, therefore it is sufficient to use it to carry out the integration and also to interchange the integral and summation signs.

\begin{array}{l}<br /> \zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\int\limits_0^\infty {\frac{{{x^{s - 1}}}}{{{e^x}}}\sum\limits_{k = 0}^\infty {{e^{ - kx}}} dx} ,\left| {{e^{ - x}}} \right| &lt; 1 \Rightarrow x &gt; 0\\<br /> \zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\int\limits_0^\infty {{x^{s - 1}}\sum\limits_{k = 0}^\infty {{e^{ - \left( {k + 1} \right)x}}} dx} \\<br /> \zeta \left( s \right) = \frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + 1} \right)}^{s - 1}}}}} \int\limits_0^\infty {{{\left[ {\left( {k + 1} \right)x} \right]}^{s - 1}}{e^{ - \left[ {(k + 1)x} \right]}}dx} \end{array}

Then,

\begin{array}{l}<br /> \zeta \left( s \right) = \sum\limits_{k = 0}^\infty {\frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\frac{1}{{{{\left( {k + 1} \right)}^{s - 1}}}}} \cdot \frac{{\Gamma (s)}}{{k + 1}}\\<br /> \zeta \left( s \right) = \sum\limits_{k = 0}^\infty {\frac{{\sin \left( {\pi s} \right)}}{\pi }\Gamma \left( {1 - s} \right)\Gamma (s)\frac{1}{{{{\left( {k + 1} \right)}^s}}}} \\<br /> \zeta \left( s \right) = \sum\limits_{k = 0}^\infty {\frac{{\sin \left( {\pi s} \right)}}{\pi }\pi \csc \left( {\pi s} \right)\frac{1}{{{{\left( {k + 1} \right)}^s}}}} \\<br /> \zeta \left( s \right) = \sum\limits_{k = 0}^\infty {\frac{1}{{{{\left( {k + 1} \right)}^s}}}} = \sum\limits_{n = 1}^\infty {\frac{1}{{{n^s}}}} <br /> \end{array}

Riemann's continuation of zeta is supposed to converge to the Dirichlet series for only Re>1. What I don't understand is that I placed no restraint on s, but from the math it would seem that it converges to the Dirichlet series for all s on which the function was defined which would imply that it is not an analytic continuation to the entire complex plane.

Obviously, I either missed something or I am not understanding something. I was wondering if anyone could help me to understand?

Thanks in advance
 
Last edited:
Physics news on Phys.org
can anyone help me out?
 
nevermind i figured it out. the integral about the circle of radius delta doesn't approach zero for all of s
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K