Analyzing the Time Needed for an Airplane Roundtrip in Windy Conditions

AI Thread Summary
The discussion focuses on calculating the time needed for an airplane's roundtrip in windy conditions, emphasizing the effects of wind on its trajectory. The airplane is shifted east due to wind, and the calculations involve determining the time taken for various segments of the trip using velocity relationships. A key point is the need for the airplane to "crab" to maintain its intended path, affecting its velocity relative to the ground. The final calculations reveal discrepancies in the expected versus calculated time, with a correction involving the cosine of an angle to account for wind direction. The conclusion affirms that the roundtrip time in windy conditions will always be longer than in calm conditions.
agnimusayoti
Messages
239
Reaction score
23
Homework Statement
an airplane is supposed to travel from A in a direction due north to B and then return to A. The distance between and B is L. The air speed of the plane is ##v## and the wind velocity is ##v'##. Show that the time for the round trip when the wind is directed due east (or west) is
$$t_{b}=\frac{t_{a}}{\sqrt{1-\frac{v'^{2}}{v^2}}}$$
where ##t_{a}## is half of the roundtrip's time in still air.
Relevant Equations
Vector additon
Because of the wind, airplane was shifted to the east. Assume airplane is shifted D units long from B.
When airplane turnaround, the wind shifted airplane to the east again as far D and to the south as far as L to the A'.
Therefore,
$$2D = (v - v') t_{AA'}$$
But,
$$D = v'(t_{a}/2)$$
Thus,
$$v't_{a} = (v- v') (t_{AA'} $$.
From this relationship, I got
$$t_{AA'} = \frac{v'}{v - v'} t_{a}$$.

Time that needed for roundtrip: A to B', B' to A' and A' to A:
$$t_b = (1 + \frac{v'}{v-v'}) t_{a}$$
$$t_b = (\frac{v}{v-v'}) t_{a}$$

My answer is different from the problem at the denominator. In my answer, (v - v'), but in the problem:: ##\sqrt{v^2 - v'^2}##.

Am I right? Or I made a mistake? Thanks!
 
Physics news on Phys.org
I believe the airplane must return to A rather than A’.
In that case, you have one triangle of velocity vectors respect to ground while moving North and another while moving South.
 
Yes. From A to B' to A' then to A right?
 
Ohh I see. I misunderstood the problem and think that v is directed to North, but the wind deviate its trajectory..
Hence, airplane must directed with angle ##\theta## from x neg in order to go to the North if the wind is due East.
From my calculation,
$${v}_{airplane,ground} \hat{j}=(v' - v \cos{\theta}) {\hat{i}} + v sin \theta (\hat{j})$$
Therefore,
$$cos \theta = \frac{v'}{v}$$
And,
$$v_{airplane,ground} = v\sqrt{1-\frac{v'^2}{v^2}}$$
With this velocity I can get the roundtrip time exactly same with the Prob.
Thanks Lnewqban!
 
Last edited:
  • Like
Likes berkeman and Lnewqban
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top