I Angular momentum and rotations

Click For Summary
The discussion focuses on the mathematical formulation of infinitesimal rotations in quantum mechanics, specifically regarding the operator R_ez(dα) and its relation to angular momentum. It is established that the operator takes the form R_ez(dα) = 1 - (i/ħ)dα J_z, where J_z is a Hermitian operator, due to the conservation of the group law for infinitesimal rotations. The unitarity condition of the operator leads to the conclusion that J_z must equal its adjoint, confirming its Hermitian nature. The conversation highlights that every operator defined by an infinitesimal parameter follows this structure, reinforcing the connection between angular momentum and rotation in quantum mechanics. Understanding this relationship is crucial for grasping the underlying principles of quantum rotations.
Kashmir
Messages
466
Reaction score
74
Cohen tannoudji. Vol 1.pg 702"Now, let us consider an infinitesimal rotation ##\mathscr{R}_{\mathbf{e}_z}(\mathrm{~d} \alpha)## about the ##O z## axis. Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator since ##R_{\mathbf{e}_z}\left(\mathrm{~d} \alpha\right.## ) is unitary (cf. Complement ##\mathrm{C}_{\mathrm{II}}, \S 3## ). This relation is the definition of ##J_z##."

Why is it that; Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator?
 
Physics news on Phys.org
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
 
  • Like
Likes Omega0, Kashmir, topsquark and 1 other person
vanhees71 said:
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
 
... because this is the infinitesimal generator relative to an virtual z axis? Is your question like "why is the Taylor expansion of the e function is at it is.."?
 
Kashmir said:
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
Every operator parameterized by an infinitesimal has that form. The group law implies ##J_z## is Hermitian. That's the point.
 
Last edited:
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
739
  • · Replies 9 ·
Replies
9
Views
551
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K