I Angular momentum and rotations

Click For Summary
The discussion focuses on the mathematical formulation of infinitesimal rotations in quantum mechanics, specifically regarding the operator R_ez(dα) and its relation to angular momentum. It is established that the operator takes the form R_ez(dα) = 1 - (i/ħ)dα J_z, where J_z is a Hermitian operator, due to the conservation of the group law for infinitesimal rotations. The unitarity condition of the operator leads to the conclusion that J_z must equal its adjoint, confirming its Hermitian nature. The conversation highlights that every operator defined by an infinitesimal parameter follows this structure, reinforcing the connection between angular momentum and rotation in quantum mechanics. Understanding this relationship is crucial for grasping the underlying principles of quantum rotations.
Kashmir
Messages
466
Reaction score
74
Cohen tannoudji. Vol 1.pg 702"Now, let us consider an infinitesimal rotation ##\mathscr{R}_{\mathbf{e}_z}(\mathrm{~d} \alpha)## about the ##O z## axis. Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator since ##R_{\mathbf{e}_z}\left(\mathrm{~d} \alpha\right.## ) is unitary (cf. Complement ##\mathrm{C}_{\mathrm{II}}, \S 3## ). This relation is the definition of ##J_z##."

Why is it that; Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator?
 
Physics news on Phys.org
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
 
  • Like
Likes Omega0, Kashmir, topsquark and 1 other person
vanhees71 said:
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
 
... because this is the infinitesimal generator relative to an virtual z axis? Is your question like "why is the Taylor expansion of the e function is at it is.."?
 
Kashmir said:
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
Every operator parameterized by an infinitesimal has that form. The group law implies ##J_z## is Hermitian. That's the point.
 
Last edited:
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...