I Angular momentum and rotations

Kashmir
Messages
466
Reaction score
74
Cohen tannoudji. Vol 1.pg 702"Now, let us consider an infinitesimal rotation ##\mathscr{R}_{\mathbf{e}_z}(\mathrm{~d} \alpha)## about the ##O z## axis. Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator since ##R_{\mathbf{e}_z}\left(\mathrm{~d} \alpha\right.## ) is unitary (cf. Complement ##\mathrm{C}_{\mathrm{II}}, \S 3## ). This relation is the definition of ##J_z##."

Why is it that; Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator?
 
Physics news on Phys.org
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
 
  • Like
Likes Omega0, Kashmir, topsquark and 1 other person
vanhees71 said:
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
 
... because this is the infinitesimal generator relative to an virtual z axis? Is your question like "why is the Taylor expansion of the e function is at it is.."?
 
Kashmir said:
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
Every operator parameterized by an infinitesimal has that form. The group law implies ##J_z## is Hermitian. That's the point.
 
Last edited:
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top