Angular momentum and rotations

Click For Summary

Discussion Overview

The discussion centers on the mathematical formulation of infinitesimal rotations in quantum mechanics, specifically the operator representation of rotations about the z-axis and the implications of unitarity and Hermitian operators. Participants explore the relationship between the group law for rotations and the form of the rotation operator.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant references a source to assert that the infinitesimal rotation operator about the z-axis is defined as $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ and questions why this form is necessary given the conservation of the group law for infinitesimal rotations.
  • Another participant discusses the unitarity of the rotation operator, showing that it leads to the conclusion that ##J_z## must be Hermitian, as indicated by the relationship $$J_z=J_z^{\dagger}$$ derived from the unitarity condition.
  • A participant reiterates the question about the necessity of the specific form of the rotation operator, suggesting that every operator parameterized by an infinitesimal has a similar form and that the group law implies the Hermitian nature of ##J_z##.
  • One participant proposes that the question may relate to the nature of the Taylor expansion of the exponential function, implying a deeper conceptual inquiry into the mathematical foundations of the operator's form.

Areas of Agreement / Disagreement

Participants express differing levels of understanding regarding the implications of the group law and the specific form of the rotation operator. There is no consensus on the clarity of the relationship between these concepts, indicating that the discussion remains unresolved.

Contextual Notes

Participants have not fully clarified the assumptions underlying the relationship between the group law and the operator form, nor have they resolved the mathematical steps leading to the conclusion about the Hermitian nature of ##J_z##.

Kashmir
Messages
466
Reaction score
74
Cohen tannoudji. Vol 1.pg 702"Now, let us consider an infinitesimal rotation ##\mathscr{R}_{\mathbf{e}_z}(\mathrm{~d} \alpha)## about the ##O z## axis. Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator since ##R_{\mathbf{e}_z}\left(\mathrm{~d} \alpha\right.## ) is unitary (cf. Complement ##\mathrm{C}_{\mathrm{II}}, \S 3## ). This relation is the definition of ##J_z##."

Why is it that; Since the group law is conserved for infinitesimal rotations, the operator ##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)## is necessarily of the form: $$ R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z $$ where ##J_z## is a Hermitian operator?
 
Physics news on Phys.org
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
 
  • Like
Likes   Reactions: Omega0, Kashmir, topsquark and 1 other person
vanhees71 said:
Unitarity of ##R \equiv R_{e_z}## means
$$R R^{\dagger}=(1-\mathrm{i} \mathrm{d} \alpha J_z)(1+\mathrm{i} \mathrm{d} \alpha) J_z^{\dagger} = 1 -\mathrm{i} \mathrm{d} \alpha (J_z - J_z^{\dagger}) + \mathcal{O}(\mathrm{d} \alpha^2) \stackrel{!}{=} 1 + \mathcal{O}(\mathrm{d} \alpha^2) \; \Rightarrow \; J_z=J_z^{\dagger}.$$
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
 
  • Like
Likes   Reactions: Omega0
... because this is the infinitesimal generator relative to an virtual z axis? Is your question like "why is the Taylor expansion of the e function is at it is.."?
 
Kashmir said:
I was trying to ask about why does
The group law being conserved for infinitesimal rotations imply that

##R_{\mathbf{e}_z}(\mathrm{~d} \alpha)=1-\frac{i}{\hbar} \mathrm{d} \alpha J_z## . Why does it necessarily have this form
Every operator parameterized by an infinitesimal has that form. The group law implies ##J_z## is Hermitian. That's the point.
 
Last edited:
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
5
Views
3K