MHB Anonymous' question at Yahoo Answers regarding the area bounded by two curves

Click For Summary
The discussion focuses on finding the area enclosed by the curves f(x) = x^3 + 4x and g(x) = 6x^2 - x. The intersection points are determined to be x = 0, 1, and 5. It is established that f(x) is greater than g(x) on the interval [0, 1], while g(x) is greater on [1, 5]. The area A is calculated using definite integrals, resulting in A = 131/4.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Integrals and Math Homework?


imgur: the simple image sharer

Seriously can't figure out this one.

Help, thanks.

I have posted a link there to this thread so the OP can see my work.
 
Mathematics news on Phys.org
Hello Anonymous,

We are given the two curves:

$$f(x)=x^3+4x$$

$$g(x)=6x^2-x$$

And we are asked to determine the area of the region enlocsed by the graphs of $f$ and $g$.

The first thing we want to do is find the $x$-coordinates of their intersections. To do this, we may equate the two functions and solve for $x$:

$$x^3+4x=6x^2-x$$

Arrange as a polynomial in standard form:

$$x^3-6x^2+5x=0$$

Factor:

$$x(x-1)(x-5)=0$$

Thus, by the zero-factor property, we find:

$$x=0,\,1,\,5$$

Next, we want to see which function is greater within the two intervals created.

i) On the interval $$[0,1]$$:

Let's use the test value $$x=\frac{1}{2}$$

$$f\left(\frac{1}{2} \right)=\left(\frac{1}{2} \right)^3+4\left(\frac{1}{2} \right)=\frac{1}{8}+2=\frac{17}{8}$$

$$g\left(\frac{1}{2} \right)=6\left(\frac{1}{2} \right)^2-\left(\frac{1}{2} \right)=\frac{3}{2}-\frac{1}{2}=1$$

We may conclude then that on this interval:

$$f(x)\ge g(x)$$

ii) On the interval $$[1,5]$$:

Let's use the test value $$x=3$$

$$f(3)=(3)^3+4(3)=27+12=39$$

$$g(3)=6(3)^2-(3)=54-3=51$$

We may conclude then that on this interval:

$$g(x)\ge f(x)$$

Hence, the area $A$ bounded by the two curves is given by:

$$A=\int_0^1 f(x)-g(x)\,dx+\int_1^5 g(x)-f(x)\,dx$$

$$A=\int_0^1 x^3-6x^2+5x\,dx-\int_1^5 x^3-6x^2+5x\,dx$$

Applying the FTOC, we obtain:

$$A=\left[\frac{1}{4}x^4-2x^3+\frac{5}{2}x^2 \right]_0^1-\left[\frac{1}{4}x^4-2x^3+\frac{5}{2}x^2 \right]_1^5$$

$$A=\left(\frac{1}{4}-2+\frac{5}{2} \right)-\left(\left(\frac{1}{4}(5)^4-2(5)^3+\frac{5}{2}(5)^2 \right)-\left(\frac{1}{4}-2+\frac{5}{2} \right) \right)$$

$$A=2\left(\frac{1}{4}-2+\frac{5}{2} \right)-5^2\left(\frac{1}{4}(5)^2-2(5)+\frac{5}{2} \right)$$

$$A=2\cdot\frac{3}{4}-25\cdot\left(-\frac{5}{4} \right)=\frac{3}{2}+\frac{125}{4}=\frac{131}{4}$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
5K
Replies
1
Views
2K
Replies
1
Views
5K
Replies
2
Views
5K