MHB Another PDE and boundary conditions

Click For Summary
The discussion revolves around solving a partial differential equation (PDE) with specific boundary conditions. Participants express uncertainty about how to handle initial conditions involving first derivatives and seek guidance on transforming the problem to achieve homogeneous boundary conditions. Suggestions include using a cosine series solution due to its properties at the boundaries and defining a new function to satisfy the boundary conditions. There is also a recommendation for a helpful textbook on the topic, emphasizing the importance of having proper resources for understanding PDEs. The conversation highlights the collaborative effort to solve complex mathematical problems within the forum.
Markov2
Messages
149
Reaction score
0
1) Solve

$\begin{aligned}
{{u}_{t}}&=K{{u}_{xx}},\text{ }0<x<L,\text{ }t>0, \\
{{u}_{x}}(0,t)&=0,\text{ }{{u}_{x}}(L,t)=0,\text{ for }t>0, \\
u(x,0)&=6+\sin \frac{3\pi x}{L}
\end{aligned}$

2) Transform the problem so that the boundary conditions get homogeneous:

$\begin{aligned}
{{u}_{t}}&=K{{u}_{xx}},\text{ }0<x<L,\text{ }t>0, \\
{{u}_{x}}(0,t)&=Ae^{-at},\text{ }{{u}_{x}}(L,t)=B,\text{ for }t>0, \\
u(x,0)&=0
\end{aligned}$

Attempts:

1) No ideas for this one, I don't know how to proceed when the initial conditions have the first derivative.

2) I think I need to define a new function right? But how?
 
Physics news on Phys.org
Markov said:
1) Solve

$\begin{aligned}
{{u}_{t}}&=K{{u}_{xx}},\text{ }0<x<L,\text{ }t>0, \\
{{u}_{x}}(0,t)&=0,\text{ }{{u}_{x}}(L,t)=0,\text{ for }t>0, \\
u(x,0)&=6+\sin \frac{3\pi x}{L}
\end{aligned}$

2) Transform the problem so that the boundary conditions get homogeneous:

$\begin{aligned}
{{u}_{t}}&=K{{u}_{xx}},\text{ }0<x<L,\text{ }t>0, \\
{{u}_{x}}(0,t)&=Ae^{-at},\text{ }{{u}_{x}}(L,t)=B,\text{ for }t>0, \\
u(x,0)&=0
\end{aligned}$

Attempts:

1) No ideas for this one, I don't know how to proceed when the initial conditions have the first derivative.

2) I think I need to define a new function right? But how?

What book are you using? If it isn't helpful, you should get Elementary Partial Differential Equations by Berg and McGregor.
 
I have no chances to get books, the only source I have left is the forum. :(

Think you could help me please? :(
 
Markov said:
I have no chances to get books, the only source I have left is the forum. :(

Think you could help me please? :(

The book I suggested is relatively cheap and it is a good book. I suggest you think about picking a book up whether it is that one or another one.
 
For 1, because the boundary conditions are homogeneous, try a solution of the form $\sum_{n=0}^\infty A_n(t)cos(n\pi x/L)$.
Use cosine because the derivative of cosine is sine which is 0 at 0 and L.
For 2, yes, you need to change the function. And you want to make the boundary conditions 0 so find a function, f(x,t), that satisfies the boundary conditions and subtract f from u.
 
Last edited by a moderator:
Okay but on (1) why can we adopt that kind of solution?

As for second question, I have $v(x,t)=A{{e}^{-at}}-\left( A{{e}^{-at}}-B \right)\dfrac{x}{L}$ so I need $f(x,t)=v(x,t)+u(x,t),$ does this work? (I had a typo, the boundary conditions don't have the first derivative.)
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K