MHB Another supremum and infimum problem

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Supremum
alexmahone
Messages
303
Reaction score
0
Let $S$ and $T$ be non-empty subsets of $\mathbb{R}$, and suppose that for all $s\in S$ and $t\in T$, we have $s\le t$. Prove that $\sup S\le\inf T$.
 
Physics news on Phys.org
Alexmahone said:
Let $S$ and $T$ be non-empty subsets of $\mathbb{R}$, and suppose that for all $s\in S$ and $t\in T$, we have $s\le t$. Prove that $\sup S\le\inf T$.
Clearly $ \inf(T)$ & $\sup(S) $ exist. WHY?

$\forall s\in S$ we know $s\le\inf(T)~.$ WHY?$
 
Last edited:
Plato said:
Clearly $ \inf(T)$ & $\sup(S) $ exist. WHY?

Because $S$ and $T$ are non-empty subsets of $\mathbb{R}$.

$\forall s\in S$ we know $s\le\inf(T)~.$ WHY?

I don't know. Why?
 
Alexmahone said:
I don't know. Why?
Well every $s\in S$ is a lower bound for $T$.
Therefore $s\le\inf(T)$.
 
Plato said:
Well every $s\in S$ is a lower bound for $T$.
Therefore $s\le\inf(T)$.

So if $\sup S>\inf T$, there must be an $s\in S$ such that $s>\inf T$. (Otherwise, $\inf T$ is a smaller upper bound for $S$ than $\sup S$.) So we get a contradiction. (Is that correct?)
 
Alexmahone said:
So if $\sup S>\inf T$, there must be an $s\in S$ such that $s>\inf T$. (Otherwise, $\inf T$ is a smaller upper bound for $S$ than $\sup S$.) So we get a contradiction. (Is that correct?)
Yes. It is correct.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top