I Antilinear Operators

  • Thread starter Thread starter hokhani
  • Start date Start date
hokhani
Messages
566
Reaction score
19
TL;DR
The correctness of an equation for antilinear operators
An antilinear operator ##\hat{A}## can be considered as, ##\hat{A}=\hat{L}\hat{K}##, where ##\hat{L}## is a linear operator and ##\hat{K} c=c^*## (##c## is a complex number). In the Eq. (26) of the text https://bohr.physics.berkeley.edu/classes/221/notes/timerev.pdf the equality ##(\langle \phi |\hat{A})|\psi \rangle=[ \langle \phi|(\hat{A}|\psi \rangle)]^*## is given but I think this equation is not correct within a minus sign. For example, in the Hilbert space of spin up and down, having ##\hat{L}=\hat{\sigma_y}## and ##|\psi\rangle=\psi_1 |+\rangle +\psi_2 |-\rangle## and ##|\phi\rangle=\phi_1 |+\rangle +\phi_2 |-\rangle## we have: ##\langle \phi | (\hat{A} |\psi\rangle)=-i\phi_1^* \psi_2^*+i\phi_2^*\psi_1^*## and ##(\langle \phi|\hat{A})|\psi \rangle=i\phi_2 \psi_1 -i\phi_1 \psi_2## which gives ##(\langle \phi |\hat{A})|\psi \rangle=-[ \langle \phi|(\hat{A}|\psi \rangle)]^*##. I appreciate any help.
 
Last edited:
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
767
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
11
Views
2K
Replies
21
Views
3K