MHB Application of existence and uniqueness theorem

find_the_fun
Messages
147
Reaction score
0
Given the differential equation [math]y'=4x^3y^3[/math] with initial condition [math]y(1)=0[/math]determine what the existence and uniqueness theorem can conclude about the IVP.

I know the Existence and Uniquness theorem has two parts 1)check to see if the function is differentiable and 2)check to see if $$\frac{\partial f}{\partial y}$$ is continious. If they both are true you can condlude there is only one solution (a unique solution). If not, then you can't conclude anything.

My problem is I don't understand which function I should be checking. Should I be checking the differential equation it self, or do I first need to solve and and then check the (a) solution?
 
Physics news on Phys.org
find_the_fun said:
Given the differential equation [math]y'=4x^3y^3[/math] with initial condition [math]y(1)=0[/math]determine what the existence and uniqueness theorem can conclude about the IVP.

I know the Existence and Uniquness theorem has two parts 1)check to see if the function is differentiable and 2)check to see if $$\frac{\partial f}{\partial y}$$ is continious. If they both are true you can condlude there is only one solution (a unique solution). If not, then you can't conclude anything.

My problem is I don't understand which function I should be checking. Should I be checking the differential equation it self, or do I first need to solve and and then check the (a) solution?

The initial value problem is of the form:

$$\left\{\begin{matrix}
y'=f(x,y)\\
\\
y(x_0)=y_0
\end{matrix}\right.$$

Therefore, the function $f$ is equal to $4x^3y^3$.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top