MHB Applications of differentiation

Colin2
Messages
9
Reaction score
0
I need help solving all three parts to this question, never seen a question regarding applications of differentiation that is this hard before!

View attachment 4094

All help is much appreciated.
 

Attachments

  • Resized.jpg
    Resized.jpg
    21.7 KB · Views: 109
Mathematics news on Phys.org
We are given the function:

$$x=\cos(\theta)+\sqrt{16-\sin^2(\theta)}$$

This is the position function...how can we find the velocity so that we may equate it to zero and solve?
 
View attachment 4096

I found the first derivative to obtain the velocity, but I'm stuck here.
I also don't know what to do with the value that is given for theta.
 

Attachments

  • rsz_img_20150312_185408.jpg
    rsz_img_20150312_185408.jpg
    85.9 KB · Views: 106
You are neglecting to apply the chain rule. You are given:

$$x=f(\theta)$$

And so we must have:

$$\d{x}{t}=\d{f}{\theta}\cdot\d{\theta}{t}$$

Now, you have correctly computed:

$$\d{f}{\theta}=-\sin(\theta)\left(1+\frac{\cos(\theta)}{\sqrt{16-\sin^2(\theta)}}\right)$$

We are given:

$$\theta=\frac{\pi}{2}t$$

So, what is $$\d{\theta}{t}$$?
 
I kinda forgot that I posted this, anyone still willing to help me solve this just for the sake of solving it?
Any help is much appreciated!
 
Colin said:
I kinda forgot that I posted this, anyone still willing to help me solve this just for the sake of solving it?
Any help is much appreciated!

Hi Colin,

Have you tried to follow what Mark has shown above. Did you find $\frac{d\theta}{dt}$?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top