MHB Applications of differentiation

AI Thread Summary
The discussion revolves around solving a complex differentiation problem involving the position function x in terms of θ. The user is attempting to find the velocity by taking the first derivative but is struggling with applying the chain rule correctly. They have computed the derivative of the function but need assistance in determining the value of dθ/dt given θ = (π/2)t. The conversation highlights the importance of correctly applying differentiation techniques to solve the problem. Overall, the thread emphasizes collaborative problem-solving in calculus applications.
Colin2
Messages
9
Reaction score
0
I need help solving all three parts to this question, never seen a question regarding applications of differentiation that is this hard before!

View attachment 4094

All help is much appreciated.
 

Attachments

  • Resized.jpg
    Resized.jpg
    21.7 KB · Views: 112
Mathematics news on Phys.org
We are given the function:

$$x=\cos(\theta)+\sqrt{16-\sin^2(\theta)}$$

This is the position function...how can we find the velocity so that we may equate it to zero and solve?
 
View attachment 4096

I found the first derivative to obtain the velocity, but I'm stuck here.
I also don't know what to do with the value that is given for theta.
 

Attachments

  • rsz_img_20150312_185408.jpg
    rsz_img_20150312_185408.jpg
    85.9 KB · Views: 108
You are neglecting to apply the chain rule. You are given:

$$x=f(\theta)$$

And so we must have:

$$\d{x}{t}=\d{f}{\theta}\cdot\d{\theta}{t}$$

Now, you have correctly computed:

$$\d{f}{\theta}=-\sin(\theta)\left(1+\frac{\cos(\theta)}{\sqrt{16-\sin^2(\theta)}}\right)$$

We are given:

$$\theta=\frac{\pi}{2}t$$

So, what is $$\d{\theta}{t}$$?
 
I kinda forgot that I posted this, anyone still willing to help me solve this just for the sake of solving it?
Any help is much appreciated!
 
Colin said:
I kinda forgot that I posted this, anyone still willing to help me solve this just for the sake of solving it?
Any help is much appreciated!

Hi Colin,

Have you tried to follow what Mark has shown above. Did you find $\frac{d\theta}{dt}$?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top