Undergrad Applications of measurement of commutativity

Click For Summary
The discussion centers on the commutator operation in linear algebra, defined as [A,B] = AB - BA, and its implications for measuring the commutativity of matrices. While the commutator is often viewed as a measure of how matrices fail to commute, there is skepticism about its effectiveness in this role. The conversation explores the potential for inducing a matrix norm on the commutator to quantify commutativity more accurately, particularly in the context of vector fields and their flows. There is also a suggestion that understanding commutativity may have applications in quantum physics, although the specifics remain unclear. The need for a proper definition of "distance from commutativity" in curved spaces is highlighted, indicating a deeper connection to differential geometry and manifold theory.
askmathquestions
Messages
65
Reaction score
6
Dang this place has a topology and analysis section too, nice.

This is probably a graduate level topic, but I am by no means an expert on these subjects, just things I learn from wikipedia and other people. The commutator is an operation on two linear operators (most often matrices) of the form ##[A,B] = AB - BA.## This is often touted as a measurement of how "badly" two matrices fail to commute, but I don't think it quite is.

I'd like to research what happens when we induce a matrix norm to the commutator, when the matrix norm of the commutator ##|| [A,B] ||^2## actually returns a specific number, I think that's more of a "measurement" of the commutativity of two matrices.

However, why bother? Are there any theoretical or scientific applications for measuring the size of matrix commutators? Possibly in quantum physics, though I don't know that subject in depth, I hope there are more applications than that.
 
Last edited:
Physics news on Phys.org
You have to consider ##A## and ##B## as vector fields. ##[A,B]## measures the gap you get if you flow along ##A## and then ##B##, or the other way around. It doesn't measure how badly matrices commute, it measures how commutative flows along vector fields are.
 
Okay, that's interesting. What about measuring the commutativity of matrices instead of vectors though? I haven't seen the commutator in the case that ##A## and ##B## are vector fields, but rather matrices.
 
askmathquestions said:
Okay, that's interesting. What about measuring the commutativity of matrices instead of vectors though? I haven't seen the commutator in the case that ##A## and ##B## are vector fields, but rather matrices.
Yes, but I explained where the comparison comes from, i.e. why people say they measure commutativity.
1666969083935.png
It is a heuristic rather than a precise definition. It needs a curved space, since ##[A,B]=0## in a flat world. In a flat world, it doesn't matter whether you go left or right in a parallelogram. In a curved world, it does matter.

You have to define a scale before you make a proper definition of what "distance from commutativity" means.
 
I've never studied differential geometry, but it sounds like this has some kind of fundamental relationship to trajectories and derivatives on various manifolds. Would you be able to illuminate that connection?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
482
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
12K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K