Hi.(adsbygoogle = window.adsbygoogle || []).push({});

I'm afraid I might just be discovering quite a big misunderstanding of mine concerning the meaning of the expectation value of a commutator for a given state.

I somehow thought that if the expectation value of the commutator of two observables ##A, B## is zero for a given state ##\left|\psi\right\rangle##, ##\langle \psi|[A,B]|\psi\rangle = 0##, then the measurement statistics for both observables must be the same no matter which one is measured first.

Obviously this cannot be true. Assume ##A## and ##B## have no common eigenstates and ##\left|\psi\right\rangle## is an eigenstate of ##A##. Then ##\sigma_A=0## but ##\sigma_B>0## and by that (assuming a situation where ##\sigma_B<\infty##)

$$0=\sigma_A\cdot\sigma_B\geq\frac{1}{2}\cdot \left|\langle \psi|[A,B]|\psi\rangle\right|\enspace ,$$

so ##\left\langle \psi|[A,B]|\psi\right\rangle=0##.

But obviously if we measure ##A## first we will always get ##\left|\psi\right\rangle##, butnotwhen we first measure ##B## and then ##A##, hence the measurement statistics depends on the order of the measurements.

So can measurements only be exchanged if ##[A,B]=0##, i.e. they share an eigenbasis? Is the only implication of ##\langle \psi|[A,B]|\psi\rangle = 0## that ##\left|\psi\right\rangle## is an eigenstate of at least one of the observables?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Commuting observables vs. exchanging measurements

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**