Applied Functional Analysis by Zeidler

Click For Summary
The discussion centers on a question from Zeidler's "Applied Functional Analysis" regarding the density of a subset S of continuous functions on [a,b] where u(a) > 0. The initial claim that this subset is dense in the space of continuous functions is challenged, as a counterexample using f(x) = -1 leads to a contradiction. Participants suggest that the text may contain a typo, possibly intending to state u(a) ≠ 0 instead. However, this adjustment raises concerns about the convexity of the set. The conversation highlights confusion over the definitions and properties of the sets discussed in the book.
_DJ_british_?
Messages
42
Reaction score
0
"Applied Functional Analysis" by Zeidler

In my book, "Applied Functional Analysis" by Zeidler, there's a question in the first chapter which, unless I got my concept of density wrong, I can't seem to see true : Let X=C[a,b] be the space of continuous functions on [a,b] with maximum norm. Then the subset S of all functions (in X) with u(a)>0 is open, convex and dense in X.

Open and convex is trivial, but how is this subset dense in X? If we take f(x)=-1, which is in X and suppose that S is dense in X, then there exists a u in S s.t. max|u(x)-f(x)|<1/2, by def. of density. But 0 < 1 < 1+u(a) = u(a)-(-1) = u(a)-f(a) = |u(a)-f(a)| =< max|u(x)-f(x)|<1/2, which implies 1 < max|u(x)-f(x)| < 1/2, a contradiction.

What I don't understand? Thanks!
 
Mathematics news on Phys.org


_DJ_british_? said:
In my book, "Applied Functional Analysis" by Zeidler, there's a question in the first chapter which, unless I got my concept of density wrong, I can't seem to see true : Let X=C[a,b] be the space of continuous functions on [a,b] with maximum norm. Then the subset S of all functions (in X) with u(a)>0 is open, convex and dense in X.

Open and convex is trivial, but how is this subset dense in X? If we take f(x)=-1, which is in X and suppose that S is dense in X, then there exists a u in S s.t. max|u(x)-f(x)|<1/2, by def. of density. But 0 < 1 < 1+u(a) = u(a)-(-1) = u(a)-f(a) = |u(a)-f(a)| =< max|u(x)-f(x)|<1/2, which implies 1 < max|u(x)-f(x)| < 1/2, a contradiction.

What I don't understand? Thanks!

You understand perfectly well. That set is not dense. Perhaps it is just a typo in the text and they meant to write u(a)\neq 0.
 


Yeah, that's what I thought, but then the set is not convex...funny thing is, the next question is to show that the set with u(a)=1 is also open, convex and dense...which it is not. Oh well.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K