Applied Stochastic processes: difference of uniform distributions

Click For Summary
SUMMARY

The discussion focuses on the distribution of the difference between two independent random variables, X and Y, both uniformly distributed in the range [-1, 1]. The change of variables technique is employed to derive the distribution function of Z = X - Y, resulting in a probability density function (PDF) defined as g(x) with specific cases for the intervals -2 < x < 0 and 0 < x < 2. The mean (μ) is calculated to be 0, while the variance (σ²) is determined to be 2/3.

PREREQUISITES
  • Understanding of uniform distributions
  • Familiarity with change of variables technique in probability
  • Knowledge of Jacobian transformations
  • Basic concepts of mean and variance in statistics
NEXT STEPS
  • Study the properties of uniform distributions in depth
  • Learn about Jacobian transformations in multivariable calculus
  • Explore the derivation of probability density functions from random variables
  • Investigate the implications of variance and standard deviation in statistical analysis
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those interested in the behavior of random variables and their distributions.

ra_forever8
Messages
106
Reaction score
0
Two independent random variables X and Y has the same uniform distributions in the range [-1..1]. Find the distribution function of Z=X-Y, its mean and variance.

=Using change of variables technique seems to be easiest.

fX(x) = 1/2

fY(y) =1/2

f = 1/4 ( -1<X<1 , -1<Y<1)

Using u =x -y , v= x+y

Jacobian is del (x,y) / del (u,v) = 1/2

then J =1/2

and g (u,v) =1/8

Integrate g with respect to v then

gu = (u+2)/4 -2<u<0

and gu = ( -u+2) /4 , 0< u<2

is the PDF of u

Finally mean and variance, Can someone help me? Thanks
 
Physics news on Phys.org
grandy said:
Two independent random variables X and Y has the same uniform distributions in the range [-1..1]. Find the distribution function of Z=X-Y, its mean and variance.

=Using change of variables technique seems to be easiest.

fX(x) = 1/2

fY(y) =1/2

f = 1/4 ( -1<X<1 , -1<Y<1)

Using u =x -y , v= x+y

Jacobian is del (x,y) / del (u,v) = 1/2

then J =1/2

and g (u,v) =1/8

Integrate g with respect to v then

gu = (u+2)/4 -2<u<0

and gu = ( -u+2) /4 , 0< u<2

is the PDF of u

Finally mean and variance, Can someone help me? Thanks

If X and Y are uniformely distributed in [-1,1], then U= X + Y and V= X - Y have the same p.d.f. that is... $\displaystyle g(x)= f(x) * f(x) = \begin{cases} \frac{1}{2}+ \frac{x}{4}\ \text{if}\ -2 < x < 0 \\ \frac{1}{2} - \frac{x}{4}\ \text{if}\ 0 < x < 2\\ 0\ \text{elsewhere}\end{cases}$ (1)

From (1) we derive immediately...

$\displaystyle \mu = \int_{-2}^{2} x\ g(x)\ dx =0\ (2)$$\displaystyle \sigma^{2} = \int_{-2}^{2} x^{2}\ g(x)\ dx = \frac{2}{3}\ (3)$

Kind regards $\chi$ $\sigma$
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K