MHB Applying Induction to Inclusion-Exclusion Principle for Probability Measures

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Principle
Julio1
Messages
66
Reaction score
0
Show that

$P(\displaystyle\bigcap_{i=1}^n A_i)=\displaystyle\sum_{i=1}^n P(A_i)-\displaystyle\sum_{i<j} P(A_i\cup A_j)+\displaystyle\sum_{i<j<k} P(A_i\cup A_j\cup A_k)-\cdots - (-1)^n P(A_1\cup A_2\cup ... \cup A_n).$

Hello, the Hint is use induction on $n$.
 
Physics news on Phys.org
I presume that the "A_i" are sets but what is "P"?
 
HallsofIvy said:
I presume that the "A_i" are sets but what is "P"?

Hello HallsofIvy. It is understood that $A_i$ are events and $P$ is a measure of probability, i.e.:

$P: \mathcal{A}\to [0,1], A\mapsto P(A).$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top