MHB Arc Length Formula: Understanding the Proof

Click For Summary
SUMMARY

The discussion centers on the proof of the arc length formula in the context of line integrals. Participants clarify that the Mean Value Theorem (MVT) ensures the existence of sample points $x_i^*$ within each subinterval, which are crucial for defining the integral. The integral's validity is independent of the choice of sample points due to the uniform continuity of the function $f$ on the interval $[a,b]$. The convergence of Riemann sums to the integral is confirmed, reinforcing the arc length formula's integrability.

PREREQUISITES
  • Understanding of the Mean Value Theorem (MVT)
  • Familiarity with Riemann sums and their convergence
  • Knowledge of continuous functions and uniform continuity
  • Basic concepts of line integrals and arc length
NEXT STEPS
  • Study the Mean Value Theorem and its applications in calculus
  • Explore the concept of uniform continuity in depth
  • Learn about Riemann sums and their role in defining definite integrals
  • Investigate the derivation and applications of the arc length formula in calculus
USEFUL FOR

Students of calculus, mathematics educators, and anyone interested in the theoretical foundations of integrals and arc length calculations.

Dethrone
Messages
716
Reaction score
0
I'm reading about Line Integrals, so I thought I'd review the proof for the arc length formula. However, there's something I don't quite understand about the proof that I either overlooked or understood before.View attachment 4468View attachment 4469

From what I see, the arc length formula holds because the MVT guarantees that there exists an $x_i^* \in [x_{i-1},x_i]$ for all $i$. This means that the integral depends on the sample points $x_i^*$ - the sample points must be the same $x_i^*$ that the MVT guarantees. If the value of the integral depends on the sample points, how does the integral exist?
 

Attachments

  • arc lenght 1.PNG
    arc lenght 1.PNG
    13.4 KB · Views: 167
  • arc lenght 2.PNG
    arc lenght 2.PNG
    13.7 KB · Views: 152
Physics news on Phys.org
Hi Rido12,

How does your book define the definite integral? There are various (but equivalent) formulations that used by different textbooks. It'll be helpful if you could show your book's definition.

From what I see though, my guess is that the formulation they use is the following. Let $f$ be a continuous function on $[a,b]$. Partition the interval $[a,b]$ into $n$ subintervals of equal length $\Delta x$ and choose a point $x_i^*$ from each subinterval. Then $\int_a^b f(x)\, dx$ is defined as $\lim\limits_{n\to \infty} \sum\limits_{i = 1}^n f(x_i^*)\, \Delta x$. If this is the formulation being used, then your question has to do why this formulation is well-defined, not about the arclength. The definition of the definite integral is independent of the choice of sample points, which can be proven by using the uniform continuity of $f$ on $[a,b]$.
 
Hi Euge,

In class, we were taught the partition definition of the definite integral, but the definition that the book uses is the following:

View attachment 4473

Yes, my question is the last sentence of yours. From the definition of the integral provided above, doesn't the arc length formula depend on the sample points chosen and thus, not integrable?
 

Attachments

  • Definition.PNG
    Definition.PNG
    13.8 KB · Views: 147
The definition used matches the one I wrote. As long as $f'$ is continuous on $[a,b]$, so is $\sqrt{1 + (f')^2}$. So the Riemann sums $\sum\limits_{i = 1}^n \sqrt{1 + [f'(x_i^*)]^2}\,\Delta x$ converge to $\int_a^b \sqrt{1 + [f'(x)]^2}\, dx$.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
6K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K