- #1
fog37
- 1,568
- 108
Hello everyone,
I am wondering if the eigenstates of Hermitian operators, which represent possible wavefunctions representing the system, are always stationary wavefunctions, i.e. the deriving probability distribution function is always time invariant. I would think so since these eigenstates arise when the system is bound... Am I correct?
Thanks!
I am wondering if the eigenstates of Hermitian operators, which represent possible wavefunctions representing the system, are always stationary wavefunctions, i.e. the deriving probability distribution function is always time invariant. I would think so since these eigenstates arise when the system is bound... Am I correct?
Thanks!