MHB Are π^(e) and e^(π) irrational with decimal approximations of 21.7 and 21.2?

  • Thread starter Thread starter mathdad
  • Start date Start date
mathdad
Messages
1,280
Reaction score
0
Can we say that π^(e) and e^(π) are irrational? If so, why?

Can we add, subtract, divide and multiply π^(e) and e^(π)
if π is approximately 3.1 and e is approximately 2.7?
 
Last edited:
Mathematics news on Phys.org
RTCNTC said:
Can we say that π^(e) and e^(π) are irrational? If so, why?

Can we add, subtract, divide and multiply π^(e) and e^(π)
if π is approximately 3.1 and e is approximately 2.7?

Let's see what wolfram says...

Wolfram doesn't say anything about pi^e, so for now that's unknown.
But it says that e^pi is transcendental (implying it's irrational). And indeed that follows from the Gelfond-Schneider theorem.

We can for sure add, subtract, divide, and multiply pi^e and e^pi - whether we approximate them with rational numbers or not.
 
Since $$\pi$$ is approximately 3.1 and e is approximately 2.7, [math]e^{/pi}[/math] is approximately 2.7^{3.1}= 21.7 and \pi^e is approximately 3.1^{2.7}= 21.2. But the word "approximately" is important there! An approximate value tells us nothing about whether a number is rational or irrational.
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
2K
Replies
4
Views
1K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
7
Views
2K
Replies
7
Views
3K
Replies
9
Views
4K
Replies
3
Views
6K
Back
Top