MHB Are Simple Functions Dense in Bounded Borel Functions on a Compact Space?

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Functions
Fermat1
Messages
180
Reaction score
0
Let K be a compact space and let B be the space of bounded borel functions on K equipped with the supremum norm. Show that simple functions (i.e. functions attaining only a finite number of values) are dense in B.

Thanks
 
Physics news on Phys.org
Fermat said:
Let K be a compact space and let B be the space of bounded borel functions on K equipped with the supremum norm. Show that simple functions (i.e. functions attaining only a finite number of values) are dense in B.

Thanks

Hi Fermat,

Please make an effort and show us what you've done.

Thanks.
 
I know I need to show $||f_{n}-f||->0$ where the $f_{n}$ are simple but I don't know where to start
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top