Are the coordinates of the vertices of this triangle all integers?

Click For Summary
SUMMARY

The discussion focuses on determining the integer coordinates of the vertices of a triangle defined by three vector equations. The vertices calculated are (-3,2), (7,0), and (3,5), leading to a perimeter expressed as \(P=\sqrt{6^2+3^2}+\sqrt{4^2+5^2}+\sqrt{10^2+2^2}=3\sqrt{5}+\sqrt{41}+2\sqrt{26}\). Participants confirm the vertices but express concern over the perimeter not being an integer, suggesting that the problem may have intended for the vertices to be integers. The conversion to Cartesian coordinates is also discussed.

PREREQUISITES
  • Understanding of vector equations and parametric equations
  • Knowledge of Cartesian coordinates and their conversion
  • Familiarity with the cosine law for angle calculations
  • Ability to calculate the perimeter of a triangle using distance formulas
NEXT STEPS
  • Explore methods for solving systems of equations in vector form
  • Learn about the properties of triangles in coordinate geometry
  • Study the centroid formula and its application in triangle geometry
  • Investigate integer solutions in geometric problems, particularly in triangle vertex calculations
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying coordinate geometry, and anyone interested in solving problems involving triangles and vector equations.

chucktingle
Messages
2
Reaction score
0
L1 [x,y]=[2,1]+r[-5,1]
L2 [x,y]=[1,4]+s[2,1]
L3 [x,y]=[3,5]+t[4,-5]
These three lines are sides of a triangle
find: 1)the perimeter of the triangle
2) The largest angle
3) the centroid of the triangle

so I converted the vector equations into parametric, and then made two of the x parametric equations to equal each other to find the vertices.This gave me to vertices (-3,2), (7,0) and (3,5). The problem is the perimeter I get from those vertices is not an integer, I was told it would have no decimals. Am I going about the problem incorrectly? Once I have the vertices I can easily find the angle with cosine law, and use the centroid formula for the centroid, I am just not sure about the vertices I got.
 
Mathematics news on Phys.org
I think I would convert to Cartesian coordinates:

$$L1\implies x+5y=7$$

$$L2\implies x-2y=-7$$

$$L3\implies 5x+4y=35$$

View attachment 6567

I agree with the vertices you found. And so the perimeter $P$ is:

$$P=\sqrt{6^2+3^2}+\sqrt{4^2+5^2}+\sqrt{10^2+2^2}=3\sqrt{5}+\sqrt{41}+2\sqrt{26}$$

Is this what you have?
 

Attachments

  • triangle_vectors.png
    triangle_vectors.png
    8.9 KB · Views: 128
MarkFL said:
I think I would convert to Cartesian coordinates:

$$L1\implies x+5y=7$$

$$L2\implies x-2y=-7$$

$$L3\implies 5x+4y=35$$
I agree with the vertices you found. And so the perimeter $P$ is:

$$P=\sqrt{6^2+3^2}+\sqrt{4^2+5^2}+\sqrt{10^2+2^2}=3\sqrt{5}+\sqrt{41}+2\sqrt{26}$$

Is this what you have?

Thanks for the reply, yep that's what I got. Maybe they rounded for the answer?
 
chucktingle said:
Thanks for the reply, yep that's what I got. Maybe they rounded for the answer?

I'm thinking that perhaps what was intended was that the coordinates of the 3 vertices would all be integers. :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K