MHB Are the statements about the confidence interval correct?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a 90%-confidence interval. I want to check if the following statements are correct.

1. If double the sample, the possibility that the value that we are looking for is out of the confidence interval is smaller.

2. The bigger the standard error, the smaller the confidence interval. Since the confidence interval is $\left (\overline{x}- Z_{a/2}\cdot s_x, \overline{x}+ Z_{a/2}\cdot s_x\right )$, where $s_x$ is the standard error, I think that the second statement is wrong and it should be that the bigger the standard error, the bigger the confidence interval.
Is this correct? (Wondering)

What about the first statement? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
It's still a $90\%$ confidence interval, right? With double the sample size, your confidence interval will shrink in absolute width, but it will still be calculated on the basis of $90\%$ confidence. The probabilities will not change, just the interval size.
 
Ackbach said:
It's still a $90\%$ confidence interval, right? With double the sample size, your confidence interval will shrink in absolute width, but it will still be calculated on the basis of $90\%$ confidence. The probabilities will not change, just the interval size.

I see! Thank you very much! (Smile)
 
Erm...
We're applying a z-value, which can only apply if the standard deviation $\sigma_x$ is given.
But apparently it's not, since we have an $s_x$, which would typically be calculated from a sample.
In that case I think we're supposed to apply a $t$-score instead of a $z$-score, aren't we? (Wondering)

Furthermore, you mention a so called standard error, but that means we're talking about the standard deviation of the mean of a sample, typically defined as $SE=s_{\bar x}=\frac{s_x}{\sqrt n}$.

This is about the standard deviation of the sample mean. Are we on the same page here? (Wondering)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top