MHB Are You Struggling with Quadratic Equations?

Click For Summary
The discussion focuses on solving quadratic equations by relating the roots and coefficients of two quadratic expressions. It establishes that if \( m \) and \( n \) are roots, their relationships can be expressed through equations derived from the coefficients of the quadratics. By equating coefficients from two sets of equations, the roots \( x_1 \) and \( x_2 \) are determined to be \( \gamma \) and \( \delta \). The conclusion confirms that the correct answer is (B), demonstrating a clear method for solving quadratic equations through systematic substitution and comparison. This approach effectively illustrates the relationships between roots and coefficients in quadratic equations.
DaalChawal
Messages
85
Reaction score
0
1628607224461.png
 
Mathematics news on Phys.org
Hi DaalChawal,

We can write
$$(x-\alpha)(x-\beta)+(x-\gamma)(x-\delta)=2x^2-(\alpha+\beta+\gamma+\delta)x+(\alpha\beta+\gamma\delta)=0\implies $$
$$x^2-\frac 12(\alpha+\beta+\gamma+\delta)x+\frac 12(\alpha\beta+\gamma\delta) = 0\tag 1$$

Since $m$ and $n$ are roots, we must have
$$(x-m)(x-n)=0\implies x^2-(m+n)x+mn=0\tag 2$$

The coefficients of equations (1) and (2) must be the same, so we have:
$$\begin{cases}m+n=\frac 12(\alpha+\beta+\gamma+\delta)\\mn=\frac 12(\alpha\beta+\gamma\delta)\end{cases}\tag 3$$

We have
$$2(x-m)(x-n)-(x-\alpha)(x-\beta)=x^2-(2(m+n)-\alpha-\beta)x+(2mn-\alpha\beta)=0$$
Let its roots be $x_1$ and $x_2$, then we must have:
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2=0$$

Again, the coefficients must match, so we have
$$\begin{cases}x_1+x_2=2(m+n)-\alpha-\beta \\ x_1x_2=2mn-\alpha\beta\end{cases}\tag 4$$

Substitute (3) in (4) to find:
$$\begin{cases}x_1+x_2=2\cdot\frac 12(\alpha+\beta+\gamma+\delta)-\alpha-\beta = \gamma+\delta \\
x_1x_2=2\cdot \frac 12(\alpha\beta+\gamma\delta)-\alpha\beta = \gamma\delta\end{cases}\tag 5$$

Therefore (B) is the correct answer.
 
Thank you Sir🙂
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K