MHB Arithmetic Progression Problem

Click For Summary
The discussion centers on finding three irreducible fractions, $\dfrac{a}{d}$, $\dfrac{b}{d}$, and $\dfrac{c}{d}$, that form an arithmetic progression under specific conditions. The conditions are given by the equations $\dfrac{b}{a}=\dfrac{1+a}{1+d}$ and $\dfrac{c}{b}=\dfrac{1+b}{1+d}$. Participants engage in solving the problem, with one user confirming the correctness of another's answer. The focus remains on deriving the fractions that satisfy the arithmetic progression criteria. The thread emphasizes the mathematical relationships between the fractions involved.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find three irreducible fractions $\dfrac{a}{d}$, $\dfrac{b}{d}$ and $\dfrac{c}{d}$ that form an arithmetic progression, if $\dfrac{b}{a}=\dfrac{1+a}{1+d}$, $\dfrac{c}{b}=\dfrac{1+b}{1+d}$.
 
Mathematics news on Phys.org
anemone said:
Find three irreducible fractions $\dfrac{a}{d}$, $\dfrac{b}{d}$ and $\dfrac{c}{d}$ that form an arithmetic progression, if $\dfrac{b}{a}=\dfrac{1+a}{1+d}$, $\dfrac{c}{b}=\dfrac{1+b}{1+d}$.

Hello.

If \ a<d \rightarrow{}a>b>c

a<d \rightarrow a+1<d+1

Same "c".

k=a-b, k=reason of the arithmetic progression.

k=a-\dfrac{a^2+a}{d+1}=\dfrac{ad-a^2}{d+1}

b-k=c \rightarrow{}b-\dfrac{ad-a^2}{d+1}=\dfrac{b^2+b}{d+1}

Resolving:

a^2-ad-b^2+bd=0

a=\dfrac{d \pm \sqrt{d^2+4b^2-4bd}}{2}

a=\dfrac{d \pm \sqrt{(d-2b)^2}}{2}

a=d-b \ or \ a=b

a=d-b \rightarrow{}d=a+b

\dfrac{b}{a}=\dfrac{1+a}{1+a+b} \rightarrow{}a^2+a=b^2+b+ab

a=\dfrac{(b-1) \pm \sqrt{(b-1)^2+4b^2+4b}}{2}

(b-1)^2+4b^2+4b=5b^2+2b+1=T^2

For \ b=2, T=5

a=3, b=2, c=1, d=5

Regards.
 
Last edited:
Thanks for participating, mente oscura! Your answer is correct, bravo!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K