MHB Arithmetic Sequence Confusion // a{n-1} and a{n+1}

Click For Summary
The discussion centers on understanding the arithmetic sequence defined by a{0}=2 and the recurrence relation a{n+1}=3a{n}−1. Participants clarify that to find a{3}, one must first calculate a{1} and a{2} using the previous terms. The confusion arises from interpreting the relationship between a{n} and a{n+1}, with some mistakenly thinking it implies using the next term instead of the current one. Ultimately, the correct approach involves sequentially applying the recurrence relation to derive the values, leading to the conclusion that a{3}=41.
Machara
Messages
1
Reaction score
0
So I have this problem I'm stuck on wrapping my head around a particular problem "In the sequence a{n}, let a{0}=2. If a{n+1} = 3 a{n} −1, then what is the value of a3?"

I understand it's following the pattern of each term, and that with Arithmetic sequence a{n-1} means you would use the a{n} term immediately prior (e.g solving for a{2} you would use the result of a{1}) but in this particular problem the sequence is a{n+1} which one would assume you would use the result of the term after? since it's Plus 1 not Minus 1, but that doesn't make sense.

On top of I can elaborate the solutions answer on my worksheet to explain what's happening, and it's saying for a{2} you would input the solution from a{1} to solve for a{2} but wouldn't that be implying the sequence is a{n-1} not a{n+1}?

What's the difference? am I missing something?
This is the elaborated solution that the webpage answers for me:

"Explanation:

To find a{3}
, first find a{1} and a{2}. The sequence says a(n+1)=3a{n}−1, and we know a{0}=2. So, we can find the rest of the sequence, starting with a{1}

.
a{0}=2
a{1}=3(2)−1=5
a{2}=3(5)−1=14
a{3}=3(14)−1=41

So, a{3}=41"
 
Mathematics news on Phys.org
Machara said:
So I have this problem I'm stuck on wrapping my head around a particular problem "In the sequence a{n}, let a{0}=2. If a{n+1} = 3 a{n} −1, then what is the value of a3?"
Do you understand what "a{0}= 2, a{n+1}= 3a{n}- 1" means?

You are told that a{0}= 2. a{1}= a{0+ 1} so a{1}= 3a{0}- 1= 3(2) -1= 5. Then a{2}= a{1+ 1}= 3a{1}- 1= 3(5)- 1= 15- 1= 14. Finally, a{3}= a(2+ 1}= 3a(2)- 1= 3(14)- 1= 42- 1= 4.

I understand it's following the pattern of each term, and that with Arithmetic sequence a{n-1} means you would use the a{n} term immediately prior (e.g solving for a{2} you would use the result of a{1}) but in this particular problem the sequence is a{n+1} which one would assume you would use the result of the term after? since it's Plus 1 not Minus 1, but that doesn't make sense.

On top of I can elaborate the solutions answer on my worksheet to explain what's happening, and it's saying for a{2} you would input the solution from a{1} to solve for a{2} but wouldn't that be implying the sequence is a{n-1} not a{n+1}?
I have no idea where you got "a-1". The problem clearly says a{n+1}

What's the difference? am I missing something?
This is the elaborated solution that the webpage answers for me:

"Explanation:

To find a{3}
, first find a{1} and a{2}. The sequence says a(n+1)=3a{n}−1, and we know a{0}=2. So, we can find the rest of the sequence, starting with a{1}

.
a{0}=2
a{1}=3(2)−1=5
a{2}=3(5)−1=14
a{3}=3(14)−1=41

So, a{3}=41"
I don't see what you could be misunderstanding about this. They took each "a" value, in turn, and calculated 3a(n)- 1 to find the next "a".
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 3 ·
Replies
3
Views
729
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K