[ASK] Distance from the Upper Base to the Center of Dodecahedron

  • Context: MHB 
  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Base Center
Click For Summary

Discussion Overview

The discussion revolves around determining the height of pentagonal pyramids that can be used to prove the volume formula of a regular dodecahedron. Participants explore various mathematical approaches, including the use of the Pythagorean theorem, trigonometry, and coordinate geometry.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant seeks to split the dodecahedron into 12 pentagonal pyramids and is unsure how to determine their height, mentioning references to the golden ratio and incircle formula.
  • Another participant provides a detailed mathematical approach involving trigonometric identities and the area of a regular pentagon, leading to a formula for the volume of the dodecahedron.
  • Concerns are raised about the reliance on coordinates for calculations, with some participants expressing a preference for using the Pythagorean theorem and trigonometry instead.
  • One participant claims to have solved the problem without coordinates and intends to share their method later.

Areas of Agreement / Disagreement

Participants express differing opinions on the use of coordinate geometry versus other methods like the Pythagorean theorem and trigonometry. There is no consensus on the best approach to determine the height of the pyramids or the overall volume of the dodecahedron.

Contextual Notes

The discussion includes various mathematical techniques and assumptions that may not be universally accepted or proven, particularly regarding the angles where the faces of the dodecahedron meet and the validity of the methods proposed.

Monoxdifly
MHB
Messages
288
Reaction score
0
I want to prove the formula of regular dodecahedron's volume. For this, I need to split the dodecahedron to 12 pentagonal pyramid with the same size. However, I don't know how to determine the height of those pentagonal pyramids. Any references I had encountered involving either golden ratio or incircle formula. Can we just determine their height using pure Pythagorean theorem? Trigonometry is also welcomed, but I still have some doubts about determining the angles where 3 faces of the dodecahedron meet because they provided no proof. Any help will be appreciated. Thanks.
 
Mathematics news on Phys.org
Monoxdifly said:
I want to prove the formula of regular dodecahedron's volume. For this, I need to split the dodecahedron to 12 pentagonal pyramid with the same size. However, I don't know how to determine the height of those pentagonal pyramids. Any references I had encountered involving either golden ratio or incircle formula. Can we just determine their height using pure Pythagorean theorem? Trigonometry is also welcomed, but I still have some doubts about determining the angles where 3 faces of the dodecahedron meet because they provided no proof. Any help will be appreciated. Thanks.
This is another tough one.

Step 1 is to check that $\tan54^\circ = \dfrac{1+\sqrt5}{\sqrt{10-2\sqrt5}}.$ That is essentially what you asked in http://mathhelpboards.com/trigonometry-12/ask-tan-36-a-18156.html#post83543, or you can find a detailed proof of it here. You can simplify that expression in two ways. First, multiply top and bottom of the fraction by $\sqrt{10+2\sqrt5}.$ Second, use the fact that $\bigl(1+\sqrt5\bigr)^2 = 6+2\sqrt5$ to write it as $$\tan54^\circ = \frac{1+\sqrt5}{\sqrt{10-2\sqrt5}} = \frac{\sqrt{(6+2\sqrt5)(10+2\sqrt5)}}{\sqrt{80}} = \frac{\sqrt{80+32\sqrt5}}{4\sqrt5} = \frac{\sqrt{5+2\sqrt5}}{\sqrt5}.$$

Step 2 is to find the area of a regular pentagon with side $a$. This consists of five "pizza slice" triangles with base $a$ and height $a\tan54^\circ$. Using Step 1, their total area comes out as $A = \sqrt{5\bigl(5+2\sqrt5\bigr)}a^2.$

Step 3 is to use coordinates to represent a regular dodecahedron. The standard choice is to take the $20$ vertices to be the points $$(\pm1,\pm1,\pm1),\quad (0,\pm\tau^{-1},\pm\tau),\quad (\pm\tau,0,\pm\tau^{-1}), \quad (\pm\tau^{-1},\pm\tau,0),$$ where $\tau$ is the golden ratio $\frac12(1+\sqrt5).$ Select one face of this dodecahedron, for example by choosing the five vertices $$(1,1,1),\quad (0,\tau^{-1},\tau),\quad (-1,1,1), \quad (-\tau^{-1},\tau,0), \quad (\tau^{-1},\tau,0).$$ The centre point of this face (obtained by taking the means of the coordinates of the vertices) is the point $$\bigl(0, \tfrac{5+3\sqrt5}{10}, \tfrac{5+\sqrt5}{10} \bigr).$$ The distance $h_0$ from that point to the centre of the dodecahedron (which is the origin) is given by $$h_0^2 = \tfrac1{100}\bigl((5+3\sqrt5)^2 + (5+\sqrt5)^2\bigr),$$ which simplifies to $h_0^2 = \frac15\bigl(5+2\sqrt5\bigr).$ The edges of this canonical dodecahedron have length $\sqrt5-1$. So in a dodecahedron with side $a$ the distance corresponding to $h_0$ would be $$h = \frac{\sqrt{\frac 15\bigl(5+2\sqrt5 \bigr)}}{\sqrt5-1}a.$$

Step 4. We can now get the volume of the dodecahedron as the union of $12$ pentagonal pyramids with base area $A$ and height $h$, namely $$V = 12\times\frac13 \times \sqrt{5\bigl(5+2\sqrt5\bigr)}a^2 \times \frac{\sqrt{\frac15\bigl(5+2\sqrt5\bigr)}}{\sqrt5-1}a.$$ Using the same trick as in Step 1 to rationalise the fraction (here, multiply top and bottom by $\sqrt5 + 1$), this simplifies to $$V = \tfrac14\bigl(15 + 7\sqrt5\bigr)a^3.$$
 
Last edited:
Coordinates again? Do I ever escape that?
 
Monoxdifly said:
Coordinates again? Do I ever escape that?
What have you got against them? Cartesian geometry is one of the most powerful tools in mathematics. (Happy)
 
Opalg said:
What have you got against them? Cartesian geometry is one of the most powerful tools in mathematics. (Happy)

I managed to do it without coordinates by using only Pythagorean theorem and trigonometry. I would post them once I have much time.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 5 ·
Replies
5
Views
11K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 16 ·
Replies
16
Views
7K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K