[ASK] Mathematical Induction: Prove 7^n-2^n is divisible by 5.

Click For Summary
SUMMARY

The discussion focuses on proving that \(7^n - 2^n\) is divisible by 5 using mathematical induction. The initial steps include verifying the base case for \(n = 1\) and assuming the statement holds for \(n = k\). The challenge arises in demonstrating that \(12 \cdot 2^k\) is divisible by 5, which is clarified by a participant correcting the calculation to \(7(7^k - 2^k) + 5 \cdot 2^k\). The conversation highlights a simpler method using the Difference of Two Terms With the Same Power, though it acknowledges that this approach is not typically taught in school.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with modular arithmetic
  • Knowledge of algebraic manipulation
  • Basic concepts of prime factorization
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Learn about modular arithmetic and its applications
  • Explore the Difference of Two Terms With the Same Power theorem
  • Practice problems involving divisibility and prime factorization
USEFUL FOR

Students learning mathematical proofs, educators teaching algebra, and anyone interested in enhancing their problem-solving skills in number theory.

Monoxdifly
MHB
Messages
288
Reaction score
0
Prove by mathematical induction that $$7^n-2^n$$ is divisible by 5.What I've done so far:For n = 1

$$7^1-2^1=7-2=5$$ (true that it is divisible by 5)

For n = k

$$7^k-2^k=5a$$ (assumed to be true that it is divisible by 5)

For n = k + 1

$$7^{k+1}-2^{k+1}=7^k\cdot7-2^k\cdot2=7(7^k-2^k)+12\cdot2^k=7(5a)+12\cdot2^k$$

This is where the problem lies. How can I show that $$12\cdot2^k$$ is divisible by 5?
 
Mathematics news on Phys.org
Monoxdifly said:
Prove by mathematical induction that $$7^n-2^n$$ is divisible by 5.What I've done so far:For n = 1

$$7^1-2^1=7-2=5$$ (true that it is divisible by 5)

For n = k

$$7^k-2^k=5a$$ (assumed to be true that it is divisible by 5)

For n = k + 1

$$7^{k+1}-2^{k+1}=7^k\cdot7-2^k\cdot2=7(7^k-2^k)+12\cdot2^k=7(5a)+12\cdot2^k$$

This is where the problem lies. How can I show that $$12\cdot2^k$$ is divisible by 5?
Hi Monoxdifly,

$12\cdot2^k$ is certainly not divisible by $5$ (look at the prime factors).

You made a mistake in your calculation: I get:
$$
7^k\cdot7 - 2^k\cdot2 = 7(7^k-2^k) + 5\cdot2^k
$$
and this should clear things up.
 
Ah, I see. Thank you very much!
 
It seems a bit overkill to use Induction, when there's a simple rule for the Difference of Two Terms With the Same Power...

$\displaystyle \begin{align*} a^n - b^n \equiv \left( a - b \right) \sum_{r = 0}^{n - 1}{ a^{n - 1 - r}\,b^r } \end{align*}$

so in your case the factor would be (7 - 2) which equals 5.
 
Prove It said:
It seems a bit overkill to use Induction, when there's a simple rule for the Difference of Two Terms With the Same Power...

$\displaystyle \begin{align*} a^n - b^n \equiv \left( a - b \right) \sum_{r = 0}^{n - 1}{ a^{n - 1 - r}\,b^r } \end{align*}$

so in your case the factor would be (7 - 2) which equals 5.

Well, the school curriculum doesn't teach this rule, so yes, we were supposed to solve it with the "overkill" method.
 
Monoxdifly said:
Well, the school curriculum doesn't teach this rule, so yes, we were supposed to solve it with the "overkill" method.

Then you can consider it as something new that you have learnt. The most concise method of proof is always the best.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K