MHB [ASK] Seemingly Simple Limit Question but I have no Idea

AI Thread Summary
The limit problem involves calculating $$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}$$ given specific values for f and g at point a. By applying L'Hôpital's rule due to the 0/0 form when substituting x = a, the derivative of the numerator is found to be g'(x)f(a) - g(a)f'(x). Substituting the known values for g'(a), f(a), g(a), and f'(a) yields a final result of 5. The discussion clarifies that determining the functions f(x) and g(x) is unnecessary for solving the limit. The correct answer to the limit question is 5.
Monoxdifly
MHB
Messages
288
Reaction score
0
If f(a) = 2, f'(a) = 1, g(a) = –1, and g'(a) = 2, the value of $$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}$$ is ...
A. 1
B. 3
C. 5
D. 7
E. 9

$$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}=\lim_{x\to a}\frac{2g(x)+f(x)}{x-a}$$. How to determine the f(x) and g(x)? And when to use the info that f'(a) = 1 and g'(a) = 2?
 
Mathematics news on Phys.org
You CAN'T "determine the f(x) and g(x)" and you don't need to do. That is not asked.

Taking x= a gives 0/0 so we can use "L'Hopitals rule". The derivative of the numerator is g'(x)f(a)- g(a)f'(x) and the derivative of the denominator is 1 so the limit is $\lim_{x\to a} g'(x)f(a)- g(a)f'(x)= g'(a)f(a)-g(a)f'(a)= (2)(2)- (1)(-1)= 4+ 1= 5$.
 
Ah, so it is indeed a simple question. My bad, Thanks for your help. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top