MHB [ASK] Seemingly Simple Limit Question but I have no Idea

Click For Summary
The limit problem involves calculating $$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}$$ given specific values for f and g at point a. By applying L'Hôpital's rule due to the 0/0 form when substituting x = a, the derivative of the numerator is found to be g'(x)f(a) - g(a)f'(x). Substituting the known values for g'(a), f(a), g(a), and f'(a) yields a final result of 5. The discussion clarifies that determining the functions f(x) and g(x) is unnecessary for solving the limit. The correct answer to the limit question is 5.
Monoxdifly
MHB
Messages
288
Reaction score
0
If f(a) = 2, f'(a) = 1, g(a) = –1, and g'(a) = 2, the value of $$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}$$ is ...
A. 1
B. 3
C. 5
D. 7
E. 9

$$\lim_{x\to a}\frac{g(x)\cdot f(a)-g(a)\cdot f(x)}{x-a}=\lim_{x\to a}\frac{2g(x)+f(x)}{x-a}$$. How to determine the f(x) and g(x)? And when to use the info that f'(a) = 1 and g'(a) = 2?
 
Mathematics news on Phys.org
You CAN'T "determine the f(x) and g(x)" and you don't need to do. That is not asked.

Taking x= a gives 0/0 so we can use "L'Hopitals rule". The derivative of the numerator is g'(x)f(a)- g(a)f'(x) and the derivative of the denominator is 1 so the limit is $\lim_{x\to a} g'(x)f(a)- g(a)f'(x)= g'(a)f(a)-g(a)f'(a)= (2)(2)- (1)(-1)= 4+ 1= 5$.
 
Ah, so it is indeed a simple question. My bad, Thanks for your help. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads