I Average magnetic moment of atom in magnetic field ##B##

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
from the partition function - am trying to show that ##\langle \mu \rangle = \beta^{-1} (\partial \log Z / \partial B)## where ##Z## is the canonical partition function for one atom, i.e. ##Z = \sum_{m=-j}^{j} \mathrm{exp}(\mu_0 \beta B m)##, and ##\mu = \mu_0 m##. The average energy:\begin{align*}
\langle E \rangle = - \frac{\partial}{\partial \beta} \log Z
\end{align*}and ##\langle E \rangle = -\langle \mu \rangle B ##. How do I get the derivative ##\partial B/ \partial \beta## to link the two results? Or is there another way.
 
Physics news on Phys.org
I guess you mean ##H_{\text{mag}}=-\vec{\mu}_{\text{mag}} \cdot \vec{B}## in the Hamiltonian; unfortunately ##\mu## is already reserved for the chemical potential of some charge or particle-number like conserved quantity (or quantities).

Then your formula follows from the Feynman-Hellman theorem as usual.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top